organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1941-o1942

N,N′-Bis(4-bromo-2-fluoro­benzyl­­idene)ethane-1,2-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 September 2008; accepted 10 September 2008; online 13 September 2008)

The mol­ecule of the title Schiff base compound, C16H12Br2F2N2, lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine C=N bonds. The imino groups are coplanar with the aromatic rings. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. An inter­esting feature of the crystal structure is the short inter­molecular Br⋯F inter­actions [3.2347 (16) Å, which is shorter than the sum of the van der Waals radii of these atoms]. These inter­actions link neighbouring mol­ecules along the c axis. The crystal structure is further stabilized by inter­molecular C—H⋯N hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For halogen–halogen inter­actions, see: Ramasubbu et al. (1986[Ramasubbu, N., Parthasathy, R. & Murry-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308-4314.]); Brammer et al. (2003[Brammer, L., Espallargas, M. E. & Adams, H. (2003). CrystEngComm, 5, 343-345.]). For related structures, see, for example: Fun & Kia (2008a[Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, o1722-o1723.],b[Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, o1870-o1871.],c[Fun, H.-K. & Kia, R. (2008c). Acta Cryst., E64, submitted [CV2444].]): Fun et al. (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1894.]). For Schiff base complexes and their applications, see, for example: Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Calligaris & Randaccio, (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Br2F2N2

  • Mr = 430.10

  • Monoclinic, P 21 /c

  • a = 4.1981 (1) Å

  • b = 14.6190 (3) Å

  • c = 12.8861 (3) Å

  • β = 104.751 (2)°

  • V = 764.78 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.32 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.07 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.172, Tmax = 0.769

  • 19361 measured reflections

  • 2631 independent reflections

  • 1907 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.05

  • 2631 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N1i 0.93 2.53 3.386 (3) 154
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. There has been growing interest in Schiff base ligands, mainly because of their wide application in the field of biochemistry, synthesis, and catalysis (Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). Many Schiff base complexes have been structurally characterized, but only a relatively small number of free Schiff bases have been characterized (Calligaris & Randaccio, 1987). As an extension of our work (Fun & Kia 2008a,b,c; Fun et al., 2008) on the structural characterization of Schiff base ligands, and the halogen-halogen interactions in the halogen-subtituated Schiff bases, the title compound (I), is reported here.

The molecule of the title compound, (I), (Fig. 1), lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine CN bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the related structures (Fun & Kia 2008a,b,c; Fun et al., 2008). The two planar units are parallel but extend in opposite directions from the dimethylene bridge. The interesting feature of the crystal structure is the short intermolecular Br···F interactions [symmetry code: 1 - x, -1/2 + y, 1/2 - z] with the distance of 3.2347 (16) Å, which is shorter than the sum of the van der Waals radii of these atoms. The directionality of these interactions, C—X···X—C (X = halogens), has been attributed to anisotropic van der Waals radii for terminally bound halogens or ascribed to donor-acceptor interactions involving a lone pair donor orbital on one halogen and a C—X σ* acceptor orbital on the other (Ramasubbu et al., 1986; Brammer et al., 2003). These interactions link neighbouring molecules along the c-axis (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···N hydrogen bonds (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For halogen–halogen interactions, see: Ramasubbu et al. (1986); Brammer et al. (2003). For related structures, see, for example: Fun & Kia (2008a,b,c): Fun et al. (2008). For Schiff base complexes and their applications, see, for example: Pal et al. (2005); Calligaris & Randaccio, (1987); Hou et al. (2001); Ren et al. (2002).

Experimental top

The synthetic method has been described earlier (Fun & Kia 2008a). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All of the hydrogen atoms were positioned geometrically with C—H = 0.93 or 0.97 Å and refined in riding model with Uiso (H) = 1.2 Ueq (C). The highest peak is located 1.73 Å from Br1 and the deepest hole is located 0.7 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms [symmetry code for A: -x, -y, -z.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a-axis, shows linking of molecules by Br···F contacts along the c-axis and the stacking of these molecules down the a-axis. Intermolecular interactions are shown as dashed lines.
N,N'-Bis(4-bromo-2-fluorobenzylidene)ethane-1,2-diamine top
Crystal data top
C16H12Br2F2N2F(000) = 420
Mr = 430.10Dx = 1.868 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5643 reflections
a = 4.1981 (1) Åθ = 3.2–30.0°
b = 14.6190 (3) ŵ = 5.32 mm1
c = 12.8861 (3) ÅT = 100 K
β = 104.751 (2)°Needle, colourless
V = 764.78 (3) Å30.51 × 0.07 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2631 independent reflections
Radiation source: fine-focus sealed tube1907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 32.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.172, Tmax = 0.770k = 2121
19361 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0539P)2]
where P = (Fo2 + 2Fc2)/3
2631 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C16H12Br2F2N2V = 764.78 (3) Å3
Mr = 430.10Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.1981 (1) ŵ = 5.32 mm1
b = 14.6190 (3) ÅT = 100 K
c = 12.8861 (3) Å0.51 × 0.07 × 0.05 mm
β = 104.751 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2631 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1907 reflections with I > 2σ(I)
Tmin = 0.172, Tmax = 0.770Rint = 0.050
19361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 1.40 e Å3
2631 reflectionsΔρmin = 0.86 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74079 (7)0.51485 (2)0.18481 (2)0.02329 (11)
F10.0347 (4)0.22639 (11)0.31348 (12)0.0267 (4)
N10.0960 (6)0.12204 (15)0.01873 (19)0.0192 (5)
C10.2112 (7)0.27577 (19)0.2280 (2)0.0199 (5)
C20.3675 (7)0.35336 (19)0.2493 (2)0.0206 (6)
H2A0.35760.37160.31920.025*
C30.5404 (7)0.40314 (18)0.1619 (2)0.0181 (5)
C40.5632 (7)0.37558 (19)0.0569 (2)0.0215 (6)
H4A0.68190.40990.00090.026*
C50.4047 (7)0.29567 (19)0.0405 (2)0.0208 (6)
H5A0.42120.27610.02930.025*
C60.2210 (6)0.24370 (18)0.1260 (2)0.0174 (5)
C70.0381 (6)0.16150 (18)0.1090 (2)0.0182 (5)
H7A0.12390.13800.16590.022*
C80.1076 (7)0.04254 (19)0.0114 (2)0.0208 (5)
H8A0.21710.05160.04560.025*
H8B0.27500.03490.07830.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02442 (16)0.01848 (15)0.02622 (17)0.00289 (11)0.00507 (11)0.00316 (11)
F10.0383 (10)0.0214 (9)0.0173 (8)0.0032 (7)0.0014 (7)0.0029 (6)
N10.0213 (11)0.0165 (11)0.0209 (11)0.0001 (9)0.0072 (9)0.0004 (9)
C10.0220 (13)0.0195 (14)0.0163 (12)0.0024 (10)0.0015 (10)0.0035 (10)
C20.0261 (14)0.0187 (13)0.0168 (13)0.0035 (10)0.0051 (11)0.0018 (10)
C30.0191 (12)0.0153 (12)0.0209 (13)0.0006 (9)0.0066 (10)0.0012 (10)
C40.0221 (13)0.0231 (14)0.0187 (13)0.0001 (11)0.0042 (11)0.0006 (11)
C50.0231 (13)0.0197 (13)0.0185 (13)0.0003 (10)0.0034 (11)0.0022 (10)
C60.0192 (13)0.0142 (12)0.0196 (13)0.0031 (9)0.0064 (10)0.0015 (10)
C70.0182 (12)0.0151 (12)0.0210 (13)0.0016 (9)0.0042 (10)0.0022 (10)
C80.0178 (12)0.0194 (12)0.0251 (14)0.0027 (10)0.0055 (10)0.0026 (11)
Geometric parameters (Å, º) top
Br1—C31.895 (3)C4—C51.387 (4)
F1—C11.366 (3)C4—H4A0.9300
N1—C71.265 (3)C5—C61.398 (4)
N1—C81.460 (4)C5—H5A0.9300
C1—C21.373 (4)C6—C71.472 (4)
C1—C61.387 (4)C7—H7A0.9300
C2—C31.382 (4)C8—C8i1.521 (6)
C2—H2A0.9300C8—H8A0.9700
C3—C41.391 (4)C8—H8B0.9700
C7—N1—C8116.3 (2)C4—C5—H5A119.1
F1—C1—C2117.7 (2)C6—C5—H5A119.1
F1—C1—C6117.7 (2)C1—C6—C5116.2 (2)
C2—C1—C6124.6 (3)C1—C6—C7121.8 (2)
C1—C2—C3116.8 (3)C5—C6—C7122.0 (2)
C1—C2—H2A121.6N1—C7—C6121.6 (2)
C3—C2—H2A121.6N1—C7—H7A119.2
C2—C3—C4122.2 (2)C6—C7—H7A119.2
C2—C3—Br1119.2 (2)N1—C8—C8i109.6 (3)
C4—C3—Br1118.6 (2)N1—C8—H8A109.8
C5—C4—C3118.4 (3)C8i—C8—H8A109.8
C5—C4—H4A120.8N1—C8—H8B109.8
C3—C4—H4A120.8C8i—C8—H8B109.8
C4—C5—C6121.9 (3)H8A—C8—H8B108.2
F1—C1—C2—C3179.0 (2)F1—C1—C6—C72.4 (4)
C6—C1—C2—C31.3 (4)C2—C1—C6—C7177.9 (3)
C1—C2—C3—C41.5 (4)C4—C5—C6—C11.1 (4)
C1—C2—C3—Br1176.3 (2)C4—C5—C6—C7176.7 (3)
C2—C3—C4—C50.4 (4)C8—N1—C7—C6178.5 (2)
Br1—C3—C4—C5177.4 (2)C1—C6—C7—N1165.9 (3)
C3—C4—C5—C61.0 (4)C5—C6—C7—N116.4 (4)
F1—C1—C6—C5179.8 (2)C7—N1—C8—C8i115.8 (3)
C2—C1—C6—C50.1 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N1ii0.932.533.386 (3)154
Symmetry code: (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12Br2F2N2
Mr430.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.1981 (1), 14.6190 (3), 12.8861 (3)
β (°) 104.751 (2)
V3)764.78 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.32
Crystal size (mm)0.51 × 0.07 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.172, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
19361, 2631, 1907
Rint0.050
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.05
No. of reflections2631
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.40, 0.86

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N1i0.93002.53003.386 (3)154.00
Symmetry code: (i) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBrammer, L., Espallargas, M. E. & Adams, H. (2003). CrystEngComm, 5, 343–345.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, o1722–o1723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, o1870–o1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008c). Acta Cryst., E64, submitted [CV2444]Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRamasubbu, N., Parthasathy, R. & Murry-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308–4314.  CrossRef CAS Web of Science Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1941-o1942
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds