organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1829-o1830

2-Hydr­­oxy-N′-(2-meth­oxy­naphthyl­­idene)benzohydrazide

aDepartment of Chemistry, Shangqiu Normal University, Shangqiu 476000, People's Republic of China
*Correspondence e-mail: xiaoyang_qiu@126.com

(Received 13 August 2008; accepted 21 August 2008; online 23 August 2008)

The title Schiff base compound, C19H16N2O3, prepared by the reaction of 2-meth­oxy-1-naphthyl­aldehyde and 2-hydroxy­benzohydrazide, crystallizes with two independent mol­ecules in the asymmetric unit. Each mol­ecule exists in a trans configuration with respect to the methyl­idene group. The naphthyl ring system make dihedral angles of 65.0 (2)° and 55.8 (2)° with the planes of the benzene rings. Intra­molecular N—H⋯O and O—H⋯O hydrogen bonds help to stabilize the mol­ecular conformations. In the crystal structure, mol­ecules are linked into one-dimensional chains parallel to the c axis by inter­molecular O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the biological properties of hydrazones, see: Bedia et al. (2006[Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]). For our previous reports on hydrazones, see: Qiu, Fang et al. (2006[Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685-o2686.]); Qiu, Luo et al. (2006a[Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006a). Acta Cryst. E62, o3531-o3532.],b[Qiu, X.-Y., Luo, Q.-Y., Yang, S.-L. & Liu, W.-S. (2006b). Acta Cryst. E62, o4291-o4292.]); Qiu, Xu et al. (2006[Qiu, X.-Y., Xu, H.-J., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2304-o2305.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see: Singh et al. (2007[Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.]); Narayana et al. (2007[Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.]); Cui et al. (2007[Cui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, o3548.]); Diao et al. (2008[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O3

  • Mr = 320.34

  • Monoclinic, P 21 /c

  • a = 15.186 (3) Å

  • b = 9.059 (2) Å

  • c = 24.135 (3) Å

  • β = 108.331 (3)°

  • V = 3151.8 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.10 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.991, Tmax = 0.994

  • 17807 measured reflections

  • 6805 independent reflections

  • 4792 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.03

  • 6805 reflections

  • 443 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N3i 0.82 2.24 3.0049 (18) 155
O3—H3⋯O5i 0.82 2.30 2.914 (2) 133
O6—H6⋯O2 0.82 1.87 2.6683 (17) 164
N2—H2⋯O3 0.918 (19) 1.942 (16) 2.6518 (18) 132.7 (17)
N4—H4A⋯O6 0.895 (9) 1.948 (16) 2.6581 (19) 135.0 (18)
N4—H4A⋯O4 0.895 (9) 2.38 (2) 2.877 (2) 114.9 (16)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hyrazone compounds, which derived from the reaction of aldehydes with hydrazides, have been widely studied due to their excellent biological properties (Bedia et al., 2006; Rollas et al., 2002; Fun et al., 2008). Recently, we have reported a few Schiff hydrazone compounds (Qiu, Fang et al., 2006; Qiu, Luo et al., 2006a,b; Qiu, Xu et al., 2006), we report herein the crystal structure of the title new compound, (I).

Compound (I) crystallizes with two independent molecules in the asymmetric unit (Fig. 1). Each molecule exists in a trans configuration with respect to the methylidene group. The naphthyl rings make dihedral angles of 65.0 (2)° and 55.8 (2)° with the planes of the benzene rings. The bond lengths and angles in (I) are found to have normal values (Allen et al., 1987) and comparable to the values in the similar compounds (Singh et al., 2007; Narayana et al., 2007; Cui et al., 2007; Diao et al., 2008). Intramolecular O–H···O and N–H···O hydrogen bonds (Table 1) help to stabilize the molecular conformations. In the crystal structure, molecules are linked into one-dimensional chains parallel to the c axis by intermolecular O–H···N and O–H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the biological properties of hydrazones, see: Bedia et al. (2006); Rollas et al. (2002); Fun et al. (2008). For our previous reports on hydrazones, see: Qiu, Fang et al. (2006); Qiu, Luo et al. (2006a,b); Qiu, Xu et al. (2006). For bond-length data, see: Allen et al. (1987). For related structures, see: Singh et al. (2007); Narayana et al. (2007); Cui et al. (2007); Diao et al. (2008).

Experimental top

The title compound was prepared by the Schiff base condensation of equimolar (0.5 mmol each) 2-methoxy-1-naphthylaldehyde and 2-hydroxybenzohydrazide in methanol (20 ml). Excess methanol was removed from the reaction mixture with distillation. The colourless solid was filtered and dried in air. Colourless block-shaped crystals suitable for X-ray diffraction were obtained from a methanol solution.

Refinement top

The imino H atoms were located in a difference map and refined with N–H distances restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically [C–H = 0.93–0.96 Å, O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and Ohydroxyl). Rotating group models were used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing and hydrogen bonding of (I), viewed along the b axis.
(I) top
Crystal data top
C19H16N2O3F(000) = 1344
Mr = 320.34Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5815 reflections
a = 15.186 (3) Åθ = 2.4–28.1°
b = 9.059 (2) ŵ = 0.09 mm1
c = 24.135 (3) ÅT = 298 K
β = 108.331 (3)°Block, colourless
V = 3151.8 (10) Å30.10 × 0.08 × 0.07 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
6805 independent reflections
Radiation source: fine-focus sealed tube4792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1019
Tmin = 0.991, Tmax = 0.994k = 1111
17807 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.6715P]
where P = (Fo2 + 2Fc2)/3
6805 reflections(Δ/σ)max < 0.001
443 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H16N2O3V = 3151.8 (10) Å3
Mr = 320.34Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.186 (3) ŵ = 0.09 mm1
b = 9.059 (2) ÅT = 298 K
c = 24.135 (3) Å0.10 × 0.08 × 0.07 mm
β = 108.331 (3)°
Data collection top
Bruker SMART CCD
diffractometer
6805 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4792 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.994Rint = 0.021
17807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
6805 reflectionsΔρmin = 0.21 e Å3
443 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43570 (8)0.65866 (12)0.40673 (6)0.0577 (3)
O20.24611 (8)0.06121 (13)0.35547 (5)0.0573 (3)
O30.15519 (9)0.28893 (15)0.47890 (6)0.0654 (4)
H30.15030.28490.51170.098*
O40.16698 (9)0.14482 (14)0.15763 (6)0.0652 (4)
O50.23207 (9)0.34100 (14)0.09458 (6)0.0665 (4)
O60.26324 (9)0.11903 (14)0.25093 (5)0.0636 (3)
H60.26930.10340.28540.095*
N10.36544 (9)0.26155 (15)0.41827 (6)0.0483 (3)
N20.27814 (9)0.24269 (15)0.42336 (6)0.0466 (3)
N30.10594 (10)0.13486 (16)0.08670 (6)0.0521 (4)
N40.17195 (9)0.16834 (16)0.13899 (6)0.0490 (3)
C10.49640 (10)0.42352 (17)0.43517 (7)0.0413 (4)
C20.51078 (11)0.56729 (17)0.41994 (7)0.0442 (4)
C30.59831 (12)0.61341 (19)0.41810 (8)0.0530 (4)
H3A0.60720.71020.40820.064*
C40.66957 (12)0.5156 (2)0.43086 (8)0.0556 (5)
H40.72700.54690.42910.067*
C50.65964 (11)0.36863 (19)0.44667 (7)0.0483 (4)
C60.73541 (13)0.2690 (2)0.46050 (8)0.0613 (5)
H6A0.79260.30100.45860.074*
C70.72615 (15)0.1284 (2)0.47645 (9)0.0696 (5)
H70.77630.06400.48540.084*
C80.64025 (14)0.0810 (2)0.47939 (9)0.0699 (6)
H80.63410.01550.49080.084*
C90.56529 (13)0.1723 (2)0.46597 (8)0.0576 (5)
H90.50900.13660.46800.069*
C100.57139 (11)0.32084 (18)0.44889 (7)0.0439 (4)
C110.40275 (10)0.38697 (18)0.43631 (7)0.0434 (4)
H110.36980.45610.45040.052*
C120.22305 (11)0.13587 (17)0.39171 (7)0.0436 (4)
C130.13277 (10)0.11120 (17)0.40235 (7)0.0421 (4)
C140.10236 (11)0.18085 (18)0.44498 (7)0.0470 (4)
C150.01809 (12)0.1424 (2)0.45176 (8)0.0574 (5)
H150.00140.18900.48020.069*
C160.03670 (13)0.0369 (2)0.41726 (9)0.0644 (5)
H160.09290.01140.42250.077*
C170.00877 (13)0.0316 (2)0.37477 (9)0.0654 (5)
H170.04640.10260.35090.078*
C180.07502 (12)0.00486 (19)0.36748 (8)0.0535 (4)
H180.09340.04250.33870.064*
C190.44208 (15)0.8020 (2)0.38459 (12)0.0814 (7)
H19A0.48920.85730.41290.122*
H19B0.38350.85150.37670.122*
H19C0.45790.79420.34920.122*
C200.02531 (11)0.02550 (18)0.13957 (7)0.0456 (4)
C210.08806 (12)0.12555 (18)0.17276 (8)0.0496 (4)
C220.06931 (13)0.2047 (2)0.21794 (8)0.0573 (5)
H220.11280.27080.24050.069*
C230.01255 (13)0.1841 (2)0.22840 (8)0.0568 (5)
H230.02470.23830.25790.068*
C240.07948 (11)0.08342 (18)0.19611 (7)0.0476 (4)
C250.16522 (13)0.0609 (2)0.20663 (8)0.0592 (5)
H250.17840.11420.23600.071*
C260.22817 (13)0.0369 (2)0.17457 (9)0.0642 (5)
H260.28430.04990.18190.077*
C270.20917 (13)0.1186 (2)0.13057 (9)0.0630 (5)
H270.25260.18600.10890.076*
C280.12729 (12)0.1001 (2)0.11913 (8)0.0546 (4)
H280.11540.15590.08990.066*
C290.06034 (11)0.00243 (17)0.15091 (7)0.0442 (4)
C300.04095 (12)0.0481 (2)0.08884 (8)0.0521 (4)
H300.00330.02810.05310.063*
C310.23628 (12)0.27271 (18)0.13895 (8)0.0480 (4)
C320.31301 (12)0.29697 (18)0.19424 (8)0.0497 (4)
C330.32713 (12)0.22094 (19)0.24690 (8)0.0521 (4)
C340.40499 (14)0.2494 (2)0.29426 (9)0.0671 (5)
H340.41440.19740.32890.080*
C350.46828 (16)0.3539 (3)0.29042 (10)0.0822 (7)
H350.52070.37140.32230.099*
C360.45451 (17)0.4331 (3)0.23953 (11)0.0847 (7)
H360.49670.50560.23730.102*
C370.37807 (15)0.4044 (2)0.19212 (10)0.0672 (5)
H370.36940.45750.15780.081*
C380.23682 (15)0.2434 (3)0.19098 (11)0.0880 (7)
H38A0.25780.21180.23100.132*
H38B0.28810.24360.17570.132*
H38C0.21160.34130.18870.132*
H20.2587 (14)0.302 (2)0.4481 (8)0.080*
H4A0.1781 (14)0.116 (2)0.1714 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0480 (7)0.0460 (7)0.0824 (9)0.0025 (5)0.0255 (6)0.0106 (6)
O20.0597 (8)0.0567 (7)0.0590 (8)0.0150 (6)0.0236 (6)0.0042 (6)
O30.0675 (8)0.0794 (9)0.0541 (8)0.0345 (7)0.0264 (7)0.0193 (7)
O40.0550 (7)0.0666 (8)0.0763 (9)0.0205 (6)0.0238 (7)0.0149 (7)
O50.0687 (8)0.0665 (8)0.0698 (9)0.0089 (7)0.0296 (7)0.0261 (7)
O60.0772 (9)0.0642 (8)0.0499 (7)0.0102 (7)0.0206 (7)0.0054 (6)
N10.0416 (7)0.0511 (8)0.0539 (8)0.0098 (6)0.0173 (6)0.0013 (7)
N20.0391 (7)0.0490 (8)0.0520 (8)0.0114 (6)0.0147 (6)0.0003 (6)
N30.0466 (8)0.0639 (9)0.0484 (8)0.0113 (7)0.0186 (7)0.0105 (7)
N40.0476 (8)0.0555 (9)0.0464 (8)0.0072 (7)0.0184 (7)0.0101 (7)
C10.0385 (8)0.0446 (8)0.0400 (8)0.0099 (7)0.0111 (6)0.0020 (7)
C20.0409 (8)0.0443 (9)0.0486 (9)0.0065 (7)0.0157 (7)0.0011 (7)
C30.0491 (10)0.0491 (10)0.0649 (11)0.0122 (8)0.0236 (8)0.0033 (8)
C40.0408 (9)0.0646 (11)0.0652 (12)0.0126 (8)0.0220 (8)0.0004 (9)
C50.0419 (9)0.0572 (10)0.0454 (9)0.0044 (8)0.0133 (7)0.0042 (8)
C60.0471 (10)0.0761 (13)0.0607 (12)0.0048 (9)0.0171 (9)0.0025 (10)
C70.0623 (13)0.0728 (14)0.0696 (13)0.0173 (11)0.0147 (10)0.0008 (11)
C80.0721 (14)0.0506 (11)0.0779 (14)0.0060 (10)0.0107 (11)0.0091 (10)
C90.0511 (10)0.0521 (10)0.0656 (12)0.0050 (8)0.0127 (9)0.0063 (9)
C100.0418 (9)0.0471 (9)0.0402 (9)0.0058 (7)0.0094 (7)0.0032 (7)
C110.0387 (8)0.0466 (9)0.0437 (9)0.0078 (7)0.0114 (7)0.0038 (7)
C120.0473 (9)0.0400 (8)0.0396 (9)0.0079 (7)0.0079 (7)0.0058 (7)
C130.0431 (8)0.0412 (8)0.0379 (8)0.0087 (7)0.0068 (6)0.0089 (7)
C140.0487 (9)0.0484 (9)0.0398 (9)0.0128 (7)0.0079 (7)0.0032 (7)
C150.0545 (10)0.0672 (12)0.0537 (11)0.0150 (9)0.0216 (8)0.0020 (9)
C160.0521 (11)0.0772 (13)0.0647 (12)0.0234 (10)0.0198 (9)0.0046 (10)
C170.0616 (12)0.0699 (12)0.0619 (12)0.0324 (10)0.0155 (10)0.0068 (10)
C180.0577 (11)0.0516 (10)0.0491 (10)0.0160 (8)0.0138 (8)0.0034 (8)
C190.0717 (14)0.0544 (12)0.123 (2)0.0039 (10)0.0378 (13)0.0286 (12)
C200.0449 (9)0.0469 (9)0.0435 (9)0.0001 (7)0.0118 (7)0.0018 (7)
C210.0484 (9)0.0473 (9)0.0519 (10)0.0037 (8)0.0139 (8)0.0013 (8)
C220.0642 (12)0.0476 (10)0.0541 (11)0.0044 (8)0.0102 (9)0.0064 (8)
C230.0714 (12)0.0505 (10)0.0500 (10)0.0098 (9)0.0212 (9)0.0014 (8)
C240.0513 (10)0.0445 (9)0.0467 (9)0.0120 (7)0.0150 (8)0.0108 (7)
C250.0604 (11)0.0633 (11)0.0596 (11)0.0223 (10)0.0270 (9)0.0171 (9)
C260.0452 (10)0.0747 (13)0.0742 (13)0.0112 (10)0.0211 (10)0.0234 (11)
C270.0462 (10)0.0645 (12)0.0744 (13)0.0003 (9)0.0133 (9)0.0095 (10)
C280.0449 (10)0.0568 (10)0.0591 (11)0.0014 (8)0.0117 (8)0.0015 (9)
C290.0429 (9)0.0427 (8)0.0453 (9)0.0057 (7)0.0113 (7)0.0083 (7)
C300.0458 (9)0.0649 (11)0.0446 (9)0.0091 (9)0.0126 (7)0.0049 (8)
C310.0503 (10)0.0434 (9)0.0595 (11)0.0140 (8)0.0307 (8)0.0099 (8)
C320.0547 (10)0.0458 (9)0.0576 (10)0.0058 (8)0.0304 (8)0.0035 (8)
C330.0587 (11)0.0502 (9)0.0544 (11)0.0022 (8)0.0281 (9)0.0053 (8)
C340.0711 (13)0.0813 (14)0.0524 (11)0.0015 (11)0.0246 (10)0.0123 (10)
C350.0760 (15)0.1089 (19)0.0671 (14)0.0206 (14)0.0304 (12)0.0308 (13)
C360.0874 (16)0.0939 (17)0.0848 (17)0.0348 (13)0.0443 (14)0.0277 (14)
C370.0785 (14)0.0622 (12)0.0746 (14)0.0090 (10)0.0436 (12)0.0052 (10)
C380.0680 (14)0.0909 (16)0.1037 (19)0.0353 (12)0.0250 (13)0.0250 (14)
Geometric parameters (Å, º) top
O1—C21.3631 (19)C15—H150.9300
O1—C191.419 (2)C16—C171.375 (3)
O2—C121.2401 (19)C16—H160.9300
O3—C141.3635 (19)C17—C181.378 (2)
O3—H30.8200C17—H170.9300
O4—C211.370 (2)C18—H180.9300
O4—C381.426 (2)C19—H19A0.9600
O5—C311.2208 (19)C19—H19B0.9600
O6—C331.365 (2)C19—H19C0.9600
O6—H60.8200C20—C211.375 (2)
N1—C111.283 (2)C20—C291.426 (2)
N1—N21.3801 (18)C20—C301.477 (2)
N2—C121.348 (2)C21—C221.407 (2)
N2—H20.918 (19)C22—C231.357 (3)
N3—C301.275 (2)C22—H220.9300
N3—N41.376 (2)C23—C241.405 (2)
N4—C311.360 (2)C23—H230.9300
N4—H4A0.895 (9)C24—C251.418 (2)
C1—C21.389 (2)C24—C291.419 (2)
C1—C101.426 (2)C25—C261.354 (3)
C1—C111.469 (2)C25—H250.9300
C2—C31.407 (2)C26—C271.397 (3)
C3—C41.357 (2)C26—H260.9300
C3—H3A0.9300C27—C281.366 (2)
C4—C51.406 (2)C27—H270.9300
C4—H40.9300C28—C291.412 (2)
C5—C61.417 (2)C28—H280.9300
C5—C101.425 (2)C30—H300.9300
C6—C71.351 (3)C31—C321.486 (3)
C6—H6A0.9300C32—C371.399 (3)
C7—C81.396 (3)C32—C331.401 (2)
C7—H70.9300C33—C341.386 (3)
C8—C91.361 (3)C34—C351.373 (3)
C8—H80.9300C34—H340.9300
C9—C101.419 (2)C35—C361.381 (3)
C9—H90.9300C35—H350.9300
C11—H110.9300C36—C371.374 (3)
C12—C131.489 (2)C36—H360.9300
C13—C181.393 (2)C37—H370.9300
C13—C141.403 (2)C38—H38A0.9600
C14—C151.385 (2)C38—H38B0.9600
C15—C161.365 (3)C38—H38C0.9600
C2—O1—C19119.52 (13)O1—C19—H19A109.5
C14—O3—H3109.5O1—C19—H19B109.5
C21—O4—C38119.16 (15)H19A—C19—H19B109.5
C33—O6—H6109.5O1—C19—H19C109.5
C11—N1—N2114.42 (14)H19A—C19—H19C109.5
C12—N2—N1118.72 (14)H19B—C19—H19C109.5
C12—N2—H2121.3 (13)C21—C20—C29119.43 (15)
N1—N2—H2120.0 (13)C21—C20—C30121.17 (15)
C30—N3—N4116.65 (14)C29—C20—C30119.14 (14)
C31—N4—N3117.96 (14)O4—C21—C20115.65 (15)
C31—N4—H4A119.5 (14)O4—C21—C22123.30 (15)
N3—N4—H4A122.0 (14)C20—C21—C22121.03 (16)
C2—C1—C10119.50 (14)C23—C22—C21119.64 (17)
C2—C1—C11116.74 (14)C23—C22—H22120.2
C10—C1—C11123.76 (14)C21—C22—H22120.2
O1—C2—C1116.21 (13)C22—C23—C24122.10 (16)
O1—C2—C3122.76 (14)C22—C23—H23119.0
C1—C2—C3121.02 (15)C24—C23—H23119.0
C4—C3—C2119.53 (16)C23—C24—C25122.61 (17)
C4—C3—H3A120.2C23—C24—C29118.35 (15)
C2—C3—H3A120.2C25—C24—C29119.03 (16)
C3—C4—C5122.26 (15)C26—C25—C24120.98 (18)
C3—C4—H4118.9C26—C25—H25119.5
C5—C4—H4118.9C24—C25—H25119.5
C4—C5—C6121.23 (16)C25—C26—C27120.25 (18)
C4—C5—C10118.70 (15)C25—C26—H26119.9
C6—C5—C10120.07 (16)C27—C26—H26119.9
C7—C6—C5121.20 (18)C28—C27—C26120.50 (19)
C7—C6—H6A119.4C28—C27—H27119.8
C5—C6—H6A119.4C26—C27—H27119.8
C6—C7—C8119.15 (18)C27—C28—C29121.10 (18)
C6—C7—H7120.4C27—C28—H28119.4
C8—C7—H7120.4C29—C28—H28119.4
C9—C8—C7121.74 (19)C28—C29—C24118.11 (15)
C9—C8—H8119.1C28—C29—C20122.44 (15)
C7—C8—H8119.1C24—C29—C20119.44 (15)
C8—C9—C10121.28 (17)N3—C30—C20129.77 (16)
C8—C9—H9119.4N3—C30—H30115.1
C10—C9—H9119.4C20—C30—H30115.1
C9—C10—C5116.55 (15)O5—C31—N4120.90 (17)
C9—C10—C1124.44 (15)O5—C31—C32121.51 (16)
C5—C10—C1118.99 (14)N4—C31—C32117.56 (15)
N1—C11—C1121.33 (15)C37—C32—C33117.81 (18)
N1—C11—H11119.3C37—C32—C31115.67 (17)
C1—C11—H11119.3C33—C32—C31126.49 (16)
O2—C12—N2121.91 (15)O6—C33—C34120.55 (17)
O2—C12—C13121.29 (14)O6—C33—C32119.19 (16)
N2—C12—C13116.80 (15)C34—C33—C32120.26 (17)
C18—C13—C14117.65 (15)C35—C34—C33120.4 (2)
C18—C13—C12116.01 (15)C35—C34—H34119.8
C14—C13—C12126.31 (14)C33—C34—H34119.8
O3—C14—C15120.06 (15)C34—C35—C36120.3 (2)
O3—C14—C13119.73 (14)C34—C35—H35119.8
C15—C14—C13120.20 (15)C36—C35—H35119.8
C16—C15—C14120.86 (18)C37—C36—C35119.6 (2)
C16—C15—H15119.6C37—C36—H36120.2
C14—C15—H15119.6C35—C36—H36120.2
C15—C16—C17119.94 (17)C36—C37—C32121.5 (2)
C15—C16—H16120.0C36—C37—H37119.2
C17—C16—H16120.0C32—C37—H37119.2
C16—C17—C18120.04 (17)O4—C38—H38A109.5
C16—C17—H17120.0O4—C38—H38B109.5
C18—C17—H17120.0H38A—C38—H38B109.5
C17—C18—C13121.31 (17)O4—C38—H38C109.5
C17—C18—H18119.3H38A—C38—H38C109.5
C13—C18—H18119.3H38B—C38—H38C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.822.243.0049 (18)155
O3—H3···O5i0.822.302.914 (2)133
O6—H6···O20.821.872.6683 (17)164
N2—H2···O30.92 (2)1.94 (2)2.6518 (18)133 (2)
N4—H4A···O60.90 (1)1.95 (2)2.6581 (19)135 (2)
N4—H4A···O40.90 (1)2.38 (2)2.877 (2)115 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H16N2O3
Mr320.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.186 (3), 9.059 (2), 24.135 (3)
β (°) 108.331 (3)
V3)3151.8 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.991, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
17807, 6805, 4792
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.03
No. of reflections6805
No. of parameters443
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.822.243.0049 (18)155.2
O3—H3···O5i0.822.302.914 (2)132.5
O6—H6···O20.821.872.6683 (17)163.5
N2—H2···O30.918 (19)1.942 (16)2.6518 (18)132.7 (17)
N4—H4A···O60.895 (9)1.948 (16)2.6581 (19)135.0 (18)
N4—H4A···O40.895 (9)2.38 (2)2.877 (2)114.9 (16)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges the Education Office of Anhui Province (project No. KJ2008B178).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, o3548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006a). Acta Cryst. E62, o3531–o3532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Luo, Q.-Y., Yang, S.-L. & Liu, W.-S. (2006b). Acta Cryst. E62, o4291–o4292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Xu, H.-J., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2304–o2305.  CSD CrossRef IUCr Journals Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1829-o1830
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds