organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methyl­amino)phenyl phenyl ketone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 June 2008; accepted 7 July 2008; online 12 July 2008)

In the crystal structure of the title compound, C15H15NO, the two benzene rings are twisted from each other by a dihedral angle of 47.97 (4)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O and C—H⋯π inter­actions, and ππ inter­actions with a centroid–centroid distance of 3.8493 (5) Å are observed.

Related literature

For related literature on non-linear optical properties of benzophenone, see: Arivanandhan et al. (2006[Arivanandhan, M., Sanjeeviraja, C., Sankaranarayanan, K., Das, S. K., Samanta, G. K. & Datta, P. K. (2006). Opt. Mater. 28, 324-330.]); Szyrszyng et al. (2004[Szyrszyng, M., Nowak, E., Gdaniec, M., Milewska, M. J. & Polonski, T. (2004). Tetrahedron Asymmetry, 15, 103-107.]); Vijayan et al. (2002[Vijayan, N., Babu, R. R., Gopalakrishnan, R., Dhanuskodi, S. & Ramasamy, P. (2002). J. Cryst. Growth, 236, 407-412.]) & Wang et al., (2007[Wang, W., Lin, X. 7 Huang, W. (2007). Opt. Mater. 29, 1063-1065.]). For bond-length data see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.])

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, P 21 /c

  • a = 13.0575 (3) Å

  • b = 7.7456 (2) Å

  • c = 12.4931 (3) Å

  • β = 111.717 (1)°

  • V = 1173.85 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100.0 (1) K

  • 0.60 × 0.43 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.977

  • 22302 measured reflections

  • 5156 independent reflections

  • 4138 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 1.06

  • 5156 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.46 3.3730 (12) 168
C10—H10⋯Cg2ii 0.93 2.98 3.6452 (9) 130
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 is the centroid of atoms C8–C13.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Benzophenone and its derivatives exhibits non-linear optical properties (Wang et al., 2007; Vijayan et al., 2002 & Arivanandhan et al., 2006) and are good candidates for the non-linear optical applications (Szyrszyng et al., 2004). In view of the importance of the benzophenone derivatives, the crystal structure of the title compound (I) has been elucidated.

The asymmetric unit of (I) consists of one molecule of 4-(dimethylamino)benzophenone. Bond lengths and angles in the molecule are found to have normal values (Allen et al., 1987) The dihedral angle formed by the rings (C1–C6) and (C8–C13) is 47.97 (4)° indicating that the rings are twisted from each other. The crystal packing (Fig.2) is consolidated by intermolecular C—H···O hydrogen bonds and C—H···π interactions. ππ interactions with the centroid to centroid distance of 3.8493 (5)Å are observed.

Related literature top

For related literature on non–linear optical properties of benzophenone, see: Arivanandhan et al. (2006); Szyrszyng et al. (2004); Vijayan et al. (2002) & Wang et al., (2007). For bond-length data see: Allen et al. (1987)

Experimental top

4-(Dimethylamino)benzophenone was purchased from Aldrich and dissolved in ethanol. The solution was allowed to evaporate slowly. Colourless crystals were obtained after a month.

Refinement top

H atoms were positioned geometrically [C—H = 0.93Å and CH3=0.96 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was considered for the methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
4-(Dimethylamino)phenyl phenyl ketone top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.275 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8685 reflections
a = 13.0575 (3) Åθ = 3.1–38.7°
b = 7.7456 (2) ŵ = 0.08 mm1
c = 12.4931 (3) ÅT = 100 K
β = 111.717 (1)°Block, colourless
V = 1173.85 (5) Å30.60 × 0.43 × 0.28 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5156 independent reflections
Radiation source: fine-focus sealed tube4138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 35.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2119
Tmin = 0.939, Tmax = 0.977k = 1012
22302 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.1876P]
where P = (Fo2 + 2Fc2)/3
5156 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H15NOV = 1173.85 (5) Å3
Mr = 225.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0575 (3) ŵ = 0.08 mm1
b = 7.7456 (2) ÅT = 100 K
c = 12.4931 (3) Å0.60 × 0.43 × 0.28 mm
β = 111.717 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5156 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4138 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.977Rint = 0.028
22302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
5156 reflectionsΔρmin = 0.25 e Å3
156 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26958 (5)0.42158 (10)0.20400 (5)0.02533 (15)
N10.10640 (5)0.34279 (10)0.40740 (6)0.01934 (14)
C10.43352 (6)0.31796 (11)0.49440 (7)0.01861 (15)
H10.39330.37650.53080.022*
C20.53797 (7)0.25436 (12)0.55889 (7)0.02153 (16)
H20.56770.27140.63820.026*
C30.59761 (7)0.16567 (12)0.50493 (8)0.02318 (17)
H30.66680.12150.54840.028*
C40.55457 (7)0.14235 (12)0.38612 (8)0.02373 (17)
H40.59480.08330.35000.028*
C50.45115 (7)0.20786 (11)0.32186 (7)0.02078 (16)
H50.42280.19420.24230.025*
C60.38907 (6)0.29412 (10)0.37532 (7)0.01685 (14)
C70.27935 (6)0.36465 (10)0.29960 (7)0.01733 (14)
C80.18415 (6)0.36068 (10)0.33575 (6)0.01575 (14)
C90.08856 (6)0.44970 (10)0.26790 (7)0.01806 (15)
H90.08970.51410.20550.022*
C100.00688 (6)0.44473 (11)0.29074 (7)0.01847 (15)
H100.06870.50520.24360.022*
C110.01199 (6)0.34866 (10)0.38509 (6)0.01540 (14)
C120.08462 (6)0.25969 (10)0.45427 (6)0.01625 (14)
H120.08430.19630.51740.019*
C130.17938 (6)0.26547 (10)0.42967 (6)0.01610 (14)
H130.24140.20510.47630.019*
C140.11461 (7)0.24089 (12)0.50120 (7)0.02242 (16)
H14A0.04650.24790.56640.034*
H14B0.12920.12270.47730.034*
H14C0.17350.28460.52200.034*
C150.20773 (7)0.41652 (14)0.32699 (8)0.02666 (19)
H15A0.19860.53870.32130.040*
H15B0.26660.39500.35380.040*
H15C0.22500.36460.25260.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0234 (3)0.0354 (4)0.0184 (3)0.0007 (2)0.0091 (2)0.0074 (2)
N10.0154 (3)0.0231 (3)0.0193 (3)0.0014 (2)0.0062 (2)0.0022 (2)
C10.0176 (3)0.0211 (3)0.0172 (3)0.0011 (3)0.0065 (3)0.0014 (3)
C20.0176 (3)0.0274 (4)0.0181 (3)0.0012 (3)0.0049 (3)0.0009 (3)
C30.0168 (3)0.0271 (4)0.0261 (4)0.0013 (3)0.0086 (3)0.0050 (3)
C40.0208 (3)0.0280 (4)0.0262 (4)0.0017 (3)0.0133 (3)0.0007 (3)
C50.0204 (3)0.0254 (4)0.0190 (3)0.0013 (3)0.0102 (3)0.0012 (3)
C60.0162 (3)0.0185 (3)0.0166 (3)0.0019 (2)0.0070 (2)0.0003 (2)
C70.0183 (3)0.0180 (3)0.0156 (3)0.0021 (2)0.0062 (3)0.0002 (2)
C80.0162 (3)0.0163 (3)0.0143 (3)0.0005 (2)0.0051 (2)0.0006 (2)
C90.0195 (3)0.0184 (3)0.0152 (3)0.0006 (2)0.0052 (3)0.0031 (2)
C100.0176 (3)0.0193 (3)0.0167 (3)0.0026 (2)0.0042 (3)0.0029 (3)
C110.0154 (3)0.0149 (3)0.0148 (3)0.0003 (2)0.0043 (2)0.0019 (2)
C120.0170 (3)0.0169 (3)0.0148 (3)0.0006 (2)0.0058 (2)0.0016 (2)
C130.0158 (3)0.0164 (3)0.0154 (3)0.0013 (2)0.0049 (2)0.0016 (2)
C140.0229 (3)0.0252 (4)0.0216 (4)0.0004 (3)0.0112 (3)0.0007 (3)
C150.0158 (3)0.0350 (5)0.0267 (4)0.0032 (3)0.0049 (3)0.0048 (3)
Geometric parameters (Å, º) top
O1—C71.2346 (10)C8—C91.4031 (10)
N1—C111.3615 (10)C8—C131.4066 (11)
N1—C141.4494 (11)C9—C101.3781 (11)
N1—C151.4499 (11)C9—H90.9300
C1—C21.3924 (11)C10—C111.4163 (11)
C1—C61.3947 (11)C10—H100.9300
C1—H10.9300C11—C121.4165 (10)
C2—C31.3862 (12)C12—C131.3816 (11)
C2—H20.9300C12—H120.9300
C3—C41.3907 (13)C13—H130.9300
C3—H30.9300C14—H14A0.9600
C4—C51.3868 (12)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.3965 (11)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.4976 (11)C15—H15C0.9600
C7—C81.4716 (11)
C11—N1—C14121.81 (7)C10—C9—C8122.12 (7)
C11—N1—C15120.55 (7)C10—C9—H9118.9
C14—N1—C15116.94 (7)C8—C9—H9118.9
C2—C1—C6120.15 (8)C9—C10—C11120.77 (7)
C2—C1—H1119.9C9—C10—H10119.6
C6—C1—H1119.9C11—C10—H10119.6
C3—C2—C1120.02 (8)N1—C11—C10120.86 (7)
C3—C2—H2120.0N1—C11—C12121.89 (7)
C1—C2—H2120.0C10—C11—C12117.25 (7)
C2—C3—C4120.36 (8)C13—C12—C11121.14 (7)
C2—C3—H3119.8C13—C12—H12119.4
C4—C3—H3119.8C11—C12—H12119.4
C5—C4—C3119.52 (8)C12—C13—C8121.49 (7)
C5—C4—H4120.2C12—C13—H13119.3
C3—C4—H4120.2C8—C13—H13119.3
C4—C5—C6120.76 (8)N1—C14—H14A109.5
C4—C5—H5119.6N1—C14—H14B109.5
C6—C5—H5119.6H14A—C14—H14B109.5
C1—C6—C5119.17 (7)N1—C14—H14C109.5
C1—C6—C7123.28 (7)H14A—C14—H14C109.5
C5—C6—C7117.47 (7)H14B—C14—H14C109.5
O1—C7—C8120.51 (7)N1—C15—H15A109.5
O1—C7—C6118.26 (7)N1—C15—H15B109.5
C8—C7—C6121.18 (7)H15A—C15—H15B109.5
C9—C8—C13117.23 (7)N1—C15—H15C109.5
C9—C8—C7117.90 (7)H15A—C15—H15C109.5
C13—C8—C7124.76 (7)H15B—C15—H15C109.5
C6—C1—C2—C30.63 (13)C6—C7—C8—C1312.54 (12)
C1—C2—C3—C41.18 (13)C13—C8—C9—C100.33 (12)
C2—C3—C4—C50.29 (14)C7—C8—C9—C10175.94 (7)
C3—C4—C5—C61.15 (13)C8—C9—C10—C110.20 (12)
C2—C1—C6—C50.79 (12)C14—N1—C11—C10177.99 (7)
C2—C1—C6—C7177.50 (7)C15—N1—C11—C107.82 (12)
C4—C5—C6—C11.69 (12)C14—N1—C11—C121.90 (12)
C4—C5—C6—C7178.59 (8)C15—N1—C11—C12172.07 (8)
C1—C6—C7—O1141.72 (9)C9—C10—C11—N1179.62 (7)
C5—C6—C7—O135.04 (11)C9—C10—C11—C120.27 (11)
C1—C6—C7—C840.56 (11)N1—C11—C12—C13179.28 (7)
C5—C6—C7—C8142.68 (8)C10—C11—C12—C130.61 (11)
O1—C7—C8—C910.84 (12)C11—C12—C13—C80.49 (12)
C6—C7—C8—C9171.49 (7)C9—C8—C13—C120.02 (11)
O1—C7—C8—C13165.13 (8)C7—C8—C13—C12176.00 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.463.3730 (12)168
C10—H10···Cg2ii0.932.983.6452 (9)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.0575 (3), 7.7456 (2), 12.4931 (3)
β (°) 111.717 (1)
V3)1173.85 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.43 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.939, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
22302, 5156, 4138
Rint0.028
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.06
No. of reflections5156
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.463.3730 (12)168
C10—H10···Cg2ii0.932.983.6452 (9)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArivanandhan, M., Sanjeeviraja, C., Sankaranarayanan, K., Das, S. K., Samanta, G. K. & Datta, P. K. (2006). Opt. Mater. 28, 324–330.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzyrszyng, M., Nowak, E., Gdaniec, M., Milewska, M. J. & Polonski, T. (2004). Tetrahedron Asymmetry, 15, 103–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationVijayan, N., Babu, R. R., Gopalakrishnan, R., Dhanuskodi, S. & Ramasamy, P. (2002). J. Cryst. Growth, 236, 407–412.  Web of Science CrossRef CAS Google Scholar
First citationWang, W., Lin, X. 7 Huang, W. (2007). Opt. Mater. 29, 1063–1065.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds