metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[3-(2-pyridylamino)pyridine-κN]nickel(II) diperchlorate ethanol disolvate

aCollege of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China
*Correspondence e-mail: hslj2004@126.com

(Received 7 March 2008; accepted 9 March 2008; online 14 March 2008)

In the title compound, [Ni(C10H9N3)4](ClO4)2·2C2H5OH, the metal centre exhibits a four-coordinated environment with four pyridine N atoms of the four different dipyridylamine ligands. A twofold rotation axis passes through the Ni atom. N—H⋯O and N—H⋯N hydrogen bonds are present in the crystal structure.

Related literature

For related literature, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Su et al. (2003[Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]); Zhou et al. (2006[Zhou, C. H., Wang, Y. Y., Li, D. S., Zhou, L. J., Liu, P. & Shi, Q. Z. (2006). Eur. J. Inorg. Chem. pp. 2437-2446.]); Biradha et al. (1999[Biradha, K., Seward, C. M. & Zaworotko, J. (1999). Angew. Chem. Int. Ed. 1999, 38, 492-495.]); Gudbjartson et al. (1999[Gudbjartson, H., Biradha, K., Poirier, K. & Zaworotko, M. J. (1999). J. Am. Chem. Soc. 121, 2599-2600.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H9N3)4](ClO4)2·2C2H6O

  • Mr = 1034.55

  • Monoclinic, C 2/c

  • a = 27.767 (4) Å

  • b = 10.7067 (14) Å

  • c = 18.144 (2) Å

  • β = 115.891 (9)°

  • V = 4852.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 298 (2) K

  • 0.32 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.836, Tmax = 0.908

  • 11042 measured reflections

  • 4315 independent reflections

  • 2875 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.134

  • S = 1.08

  • 4315 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5B⋯O5 0.86 2.07 2.928 (5) 174
N2—H2⋯N6i 0.86 2.27 3.129 (4) 176
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the rational design and assembly of metal-organic frameworks (MOFs) with well regulated network structures have received remarkable attention in order to develop new functional materials with potential applications (Moulton & Zaworotko, 2001). Nevertheless, it is still a great challenge to predict the exact structures and compositions of polymeric compounds assembled in a helical motif, although some structures with various helices have been reported in MOFs. So far, much of the research has been concentrated on the exploitation of angular ligands with a molecular angle, such as ligands with a T-shape, V-shape etc, in the construction of versatile coordination polymer architectures (Gudbjartson et al., 1999; Su et al., 2003, Zhou et al., 2006). In this paper, we report the synthesis and crystal structure of the title complex with a V-shaped ligand,(I).

As shown in Fig. 1, the complex I is located twofold axis via the 2,3'-dipyridylamine (L) ligands. That I is a neutral, mononuclear molecule with the Ni(II) atom in a square coordination geometry with four pyridine nitrogen atoms of the four different L ligands. The Ni—N bond lengths range from 2.013 (2) to 2.019 (2)Å (Table1), and the N(1)—Ni—N(4) angle is 179.09 (11)°, it can be seen that the Ni(II) ions together with the four nitrogen atoms form a perfect square geometry, and this ideal quadrangle structure is rare in the coordination geometry of Ni(II) atom. Four L ligands present monodenate fashion. Two O atoms of the uncoordinated ClO4 anions form the acceptors of intermolecular hydrogen bonds and weak interactions, which link the discrete units to form a two-dimensional supramolecular structure. The ethanol molecule present in I only functioned as an acceptor of intramolecular hydrogen bonds between the oxygen atoms of ethonal and amino nitrogen atoms of the ligand (Table 2), which stabilize the extended structure.

Related literature top

For related literature, see: Moulton & Zaworotko (2001); Su et al. (2003); Zhou et al. (2006); Biradha et al. (1999); Gudbjartson et al. (1999).

Experimental top

NiClO4 (0.027 g, 0.013 mmol), L (0.025 g, 0.014 mmol) were added in a solvent of methanol, the mixture was heated for 6 h under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, Two weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement top

The H atoms (pyridine ring) were placed in calculated positions [C—H = 0.93 - 0.97 Å and N—H = 0.86 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids [symmetrical code: (i) -x, y, 1/2 - z].
Tetrakis[3-(2-pyridylamino)pyridine-κN]nickel(II) bis(perchlorate) ethanol disolvate top
Crystal data top
[Ni(C10H9N3)4](ClO4)2·2C2H6OF(000) = 2152
Mr = 1034.55Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4315 reflections
a = 27.767 (4) Åθ = 1.6–25.1°
b = 10.7067 (14) ŵ = 0.58 mm1
c = 18.144 (2) ÅT = 298 K
β = 115.891 (9)°Block, green
V = 4852.6 (11) Å30.32 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4315 independent reflections
Radiation source: fine-focus sealed tube2875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3333
Tmin = 0.836, Tmax = 0.908k = 1212
11042 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0501P)2 + 1.1196P]
where P = (Fo2 + 2Fc2)/3
4315 reflections(Δ/σ)max = 0.084
314 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C10H9N3)4](ClO4)2·2C2H6OV = 4852.6 (11) Å3
Mr = 1034.55Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.767 (4) ŵ = 0.58 mm1
b = 10.7067 (14) ÅT = 298 K
c = 18.144 (2) Å0.32 × 0.22 × 0.17 mm
β = 115.891 (9)°
Data collection top
Bruker APEXII area-detector
diffractometer
4315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2875 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.908Rint = 0.044
11042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
4315 reflectionsΔρmin = 0.36 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.23720 (5)0.75000.0397 (2)
N10.54118 (10)0.1032 (2)0.72421 (16)0.0455 (6)
N20.60983 (11)0.1938 (3)0.80972 (17)0.0586 (8)
H20.63370.23490.80160.070*
N30.56191 (11)0.1786 (3)0.88745 (18)0.0577 (7)
N40.54239 (10)0.3700 (2)0.72509 (16)0.0438 (6)
N50.68140 (10)0.4606 (3)0.79766 (17)0.0550 (7)
H5B0.69450.39230.82370.066*
N60.69860 (11)0.6684 (3)0.77848 (18)0.0574 (7)
C10.56303 (12)0.0085 (3)0.77601 (19)0.0456 (8)
H10.56210.01040.82670.055*
C20.58706 (13)0.0930 (3)0.7574 (2)0.0474 (8)
C30.58891 (14)0.0912 (3)0.6822 (2)0.0547 (9)
H30.60510.15660.66770.066*
C40.56711 (14)0.0061 (3)0.6297 (2)0.0565 (9)
H40.56840.00730.57940.068*
C50.54302 (13)0.1029 (3)0.6514 (2)0.0515 (8)
H50.52790.16870.61520.062*
C60.59913 (15)0.2364 (3)0.8729 (2)0.0544 (9)
C70.62701 (16)0.3403 (4)0.9173 (2)0.0682 (11)
H70.65290.37910.90580.082*
C80.61504 (17)0.3838 (4)0.9787 (2)0.0757 (11)
H80.63240.45401.00890.091*
C90.57742 (17)0.3231 (4)0.9951 (2)0.0720 (11)
H90.56920.35021.03690.086*
C100.55247 (15)0.2224 (4)0.9489 (2)0.0643 (10)
H100.52720.18120.96060.077*
C110.59564 (12)0.3773 (3)0.76688 (19)0.0437 (7)
H110.61270.32290.81060.052*
C120.62665 (12)0.4614 (3)0.74861 (19)0.0426 (7)
C130.60115 (12)0.5367 (3)0.6812 (2)0.0477 (8)
H130.62080.59040.66450.057*
C140.54629 (13)0.5316 (3)0.6387 (2)0.0525 (8)
H140.52850.58410.59420.063*
C150.51777 (13)0.4489 (3)0.6622 (2)0.0515 (8)
H150.48060.44750.63390.062*
C160.71742 (12)0.5563 (3)0.8097 (2)0.0480 (8)
C170.77153 (13)0.5330 (4)0.8563 (2)0.0653 (10)
H170.78350.45420.87840.078*
C180.80698 (16)0.6289 (5)0.8690 (3)0.0827 (13)
H180.84340.61630.90070.099*
C190.78839 (18)0.7437 (4)0.8349 (3)0.0815 (13)
H190.81180.80940.84150.098*
C200.73503 (16)0.7584 (4)0.7913 (3)0.0701 (11)
H200.72260.83660.76860.084*
Cl10.39899 (4)0.22782 (8)0.51603 (5)0.0580 (3)
O10.42456 (13)0.2385 (3)0.60132 (16)0.0903 (10)
O20.43498 (15)0.2706 (3)0.4854 (2)0.1180 (13)
O30.38628 (16)0.1017 (3)0.4956 (2)0.1268 (14)
O40.35263 (17)0.2973 (5)0.4863 (4)0.196 (2)
O50.7269 (3)0.2376 (3)0.8974 (3)0.166 (2)
H5A0.70750.25710.91900.249*
C210.7270 (3)0.0252 (6)0.9344 (4)0.143 (2)
H21A0.75320.05530.98630.215*
H21B0.73960.05060.92060.215*
H21C0.69400.00940.93780.215*
C220.7186 (3)0.1150 (6)0.8741 (4)0.151 (3)
H22A0.74160.09480.84820.181*
H22B0.68190.10680.83270.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0470 (3)0.0271 (3)0.0562 (4)0.0000.0329 (3)0.000
N10.0539 (16)0.0367 (15)0.0564 (16)0.0018 (12)0.0340 (14)0.0022 (13)
N20.070 (2)0.0493 (17)0.0644 (19)0.0226 (15)0.0365 (17)0.0081 (15)
N30.0660 (19)0.0489 (18)0.0645 (19)0.0046 (14)0.0344 (17)0.0068 (15)
N40.0470 (16)0.0328 (14)0.0556 (16)0.0043 (12)0.0261 (14)0.0038 (13)
N50.0428 (16)0.0420 (16)0.071 (2)0.0045 (12)0.0166 (15)0.0154 (14)
N60.0506 (17)0.0438 (18)0.073 (2)0.0016 (14)0.0221 (16)0.0044 (15)
C10.057 (2)0.0342 (17)0.0531 (19)0.0017 (15)0.0311 (17)0.0019 (16)
C20.0508 (19)0.0390 (18)0.058 (2)0.0035 (15)0.0285 (17)0.0007 (16)
C30.065 (2)0.046 (2)0.064 (2)0.0063 (17)0.0384 (19)0.0056 (18)
C40.072 (2)0.052 (2)0.059 (2)0.0061 (18)0.041 (2)0.0009 (18)
C50.063 (2)0.046 (2)0.058 (2)0.0033 (16)0.0376 (18)0.0063 (17)
C60.061 (2)0.044 (2)0.054 (2)0.0017 (17)0.0212 (18)0.0013 (17)
C70.079 (3)0.054 (2)0.068 (3)0.017 (2)0.029 (2)0.011 (2)
C80.086 (3)0.056 (3)0.065 (3)0.003 (2)0.014 (2)0.012 (2)
C90.075 (3)0.075 (3)0.059 (2)0.012 (2)0.023 (2)0.014 (2)
C100.061 (2)0.069 (3)0.065 (2)0.0037 (19)0.029 (2)0.006 (2)
C110.045 (2)0.0372 (18)0.0494 (19)0.0069 (14)0.0213 (16)0.0081 (15)
C120.0455 (18)0.0325 (16)0.0498 (18)0.0019 (13)0.0208 (16)0.0001 (14)
C130.051 (2)0.0383 (18)0.054 (2)0.0073 (15)0.0230 (17)0.0052 (16)
C140.048 (2)0.0414 (19)0.057 (2)0.0002 (15)0.0123 (17)0.0124 (16)
C150.0446 (19)0.0412 (19)0.063 (2)0.0004 (15)0.0184 (17)0.0032 (17)
C160.0405 (18)0.047 (2)0.056 (2)0.0021 (15)0.0204 (16)0.0038 (16)
C170.043 (2)0.061 (2)0.079 (3)0.0068 (17)0.0141 (19)0.003 (2)
C180.043 (2)0.095 (4)0.101 (3)0.008 (2)0.024 (2)0.006 (3)
C190.064 (3)0.077 (3)0.096 (3)0.026 (2)0.029 (3)0.005 (3)
C200.067 (3)0.054 (2)0.078 (3)0.0135 (19)0.022 (2)0.006 (2)
Cl10.0655 (6)0.0541 (6)0.0529 (5)0.0062 (4)0.0243 (5)0.0040 (4)
O10.104 (2)0.120 (3)0.0521 (16)0.0282 (18)0.0392 (17)0.0173 (15)
O20.150 (3)0.146 (3)0.084 (2)0.053 (2)0.076 (2)0.000 (2)
O30.183 (4)0.082 (2)0.152 (3)0.060 (2)0.106 (3)0.062 (2)
O40.095 (3)0.162 (4)0.274 (6)0.057 (3)0.026 (4)0.053 (4)
O50.221 (6)0.067 (2)0.128 (4)0.010 (3)0.001 (3)0.019 (2)
C210.189 (7)0.092 (4)0.147 (6)0.001 (4)0.072 (5)0.004 (4)
C220.187 (7)0.080 (4)0.129 (5)0.028 (4)0.017 (5)0.013 (4)
Geometric parameters (Å, º) top
Ni1—N1i2.013 (2)C9—C101.356 (5)
Ni1—N12.013 (2)C9—H90.9300
Ni1—N42.019 (2)C10—H100.9300
Ni1—N4i2.019 (2)C11—C121.382 (4)
N1—C11.335 (4)C11—H110.9300
N1—C51.344 (4)C12—C131.375 (4)
N2—C61.382 (4)C13—C141.375 (4)
N2—C21.393 (4)C13—H130.9300
N2—H20.8600C14—C151.373 (4)
N3—C61.326 (4)C14—H140.9300
N3—C101.336 (4)C15—H150.9300
N4—C111.337 (4)C16—C171.388 (5)
N4—C151.342 (4)C17—C181.371 (5)
N5—C161.381 (4)C17—H170.9300
N5—C121.386 (4)C18—C191.371 (6)
N5—H5B0.8600C18—H180.9300
N6—C161.332 (4)C19—C201.350 (6)
N6—C201.342 (4)C19—H190.9300
C1—C21.392 (4)C20—H200.9300
C1—H10.9300Cl1—O41.377 (4)
C2—C31.388 (4)Cl1—O11.397 (3)
C3—C41.362 (5)Cl1—O31.404 (3)
C3—H30.9300Cl1—O21.415 (3)
C4—C51.381 (4)O5—C221.368 (6)
C4—H40.9300O5—H5A0.8200
C5—H50.9300C21—C221.397 (7)
C6—C71.394 (5)C21—H21A0.9600
C7—C81.376 (5)C21—H21B0.9600
C7—H70.9300C21—H21C0.9600
C8—C91.369 (5)C22—H22A0.9700
C8—H80.9300C22—H22B0.9700
N1i—Ni1—N189.08 (14)N4—C11—C12123.5 (3)
N1i—Ni1—N4179.09 (11)N4—C11—H11118.2
N1—Ni1—N490.24 (10)C12—C11—H11118.2
N1i—Ni1—N4i90.24 (10)C13—C12—C11117.5 (3)
N1—Ni1—N4i179.09 (11)C13—C12—N5124.7 (3)
N4—Ni1—N4i90.44 (13)C11—C12—N5117.7 (3)
C1—N1—C5119.3 (3)C12—C13—C14119.3 (3)
C1—N1—Ni1120.49 (19)C12—C13—H13120.4
C5—N1—Ni1120.0 (2)C14—C13—H13120.4
C6—N2—C2128.5 (3)C15—C14—C13120.0 (3)
C6—N2—H2115.7C15—C14—H14120.0
C2—N2—H2115.7C13—C14—H14120.0
C6—N3—C10117.1 (3)N4—C15—C14121.4 (3)
C11—N4—C15118.2 (3)N4—C15—H15119.3
C11—N4—Ni1121.5 (2)C14—C15—H15119.3
C15—N4—Ni1120.2 (2)N6—C16—N5118.6 (3)
C16—N5—C12127.8 (3)N6—C16—C17122.7 (3)
C16—N5—H5B116.1N5—C16—C17118.7 (3)
C12—N5—H5B116.1C18—C17—C16118.4 (4)
C16—N6—C20116.6 (3)C18—C17—H17120.8
N1—C1—C2122.8 (3)C16—C17—H17120.8
N1—C1—H1118.6C17—C18—C19119.6 (4)
C2—C1—H1118.6C17—C18—H18120.2
C3—C2—C1117.0 (3)C19—C18—H18120.2
C3—C2—N2118.7 (3)C20—C19—C18118.0 (4)
C1—C2—N2124.3 (3)C20—C19—H19121.0
C4—C3—C2120.2 (3)C18—C19—H19121.0
C4—C3—H3119.9N6—C20—C19124.7 (4)
C2—C3—H3119.9N6—C20—H20117.7
C3—C4—C5119.8 (3)C19—C20—H20117.7
C3—C4—H4120.1O4—Cl1—O1109.0 (3)
C5—C4—H4120.1O4—Cl1—O3109.4 (3)
N1—C5—C4120.9 (3)O1—Cl1—O3108.6 (2)
N1—C5—H5119.6O4—Cl1—O2111.8 (3)
C4—C5—H5119.6O1—Cl1—O2107.7 (2)
N3—C6—N2118.7 (3)O3—Cl1—O2110.3 (2)
N3—C6—C7122.8 (3)C22—O5—H5A109.5
N2—C6—C7118.5 (3)C22—C21—H21A109.5
C8—C7—C6118.0 (4)C22—C21—H21B109.5
C8—C7—H7121.0H21A—C21—H21B109.5
C6—C7—H7121.0C22—C21—H21C109.5
C9—C8—C7119.5 (4)H21A—C21—H21C109.5
C9—C8—H8120.3H21B—C21—H21C109.5
C7—C8—H8120.3O5—C22—C21118.1 (6)
C10—C9—C8118.4 (4)O5—C22—H22A107.8
C10—C9—H9120.8C21—C22—H22A107.8
C8—C9—H9120.8O5—C22—H22B107.8
N3—C10—C9124.2 (4)C21—C22—H22B107.8
N3—C10—H10117.9H22A—C22—H22B107.1
C9—C10—H10117.9
N1i—Ni1—N1—C148.8 (2)C6—C7—C8—C91.2 (6)
N4—Ni1—N1—C1130.6 (2)C7—C8—C9—C101.0 (6)
N1i—Ni1—N1—C5125.6 (3)C6—N3—C10—C91.8 (6)
N4—Ni1—N1—C555.0 (3)C8—C9—C10—N30.5 (6)
N1—Ni1—N4—C1159.8 (2)C15—N4—C11—C120.2 (4)
N4i—Ni1—N4—C11120.8 (3)Ni1—N4—C11—C12175.7 (2)
N1—Ni1—N4—C15116.0 (2)N4—C11—C12—C133.4 (4)
N4i—Ni1—N4—C1563.4 (2)N4—C11—C12—N5179.0 (3)
C5—N1—C1—C21.2 (5)C16—N5—C12—C1325.5 (5)
Ni1—N1—C1—C2173.2 (2)C16—N5—C12—C11157.0 (3)
N1—C1—C2—C31.7 (5)C11—C12—C13—C144.5 (4)
N1—C1—C2—N2179.5 (3)N5—C12—C13—C14178.0 (3)
C6—N2—C2—C3157.8 (3)C12—C13—C14—C152.2 (5)
C6—N2—C2—C123.3 (6)C11—N4—C15—C142.7 (4)
C1—C2—C3—C40.9 (5)Ni1—N4—C15—C14173.3 (2)
N2—C2—C3—C4179.9 (3)C13—C14—C15—N41.5 (5)
C2—C3—C4—C50.2 (5)C20—N6—C16—N5179.7 (3)
C1—N1—C5—C40.0 (5)C20—N6—C16—C172.8 (5)
Ni1—N1—C5—C4174.4 (2)C12—N5—C16—N67.6 (5)
C3—C4—C5—N10.6 (5)C12—N5—C16—C17174.8 (3)
C10—N3—C6—N2179.8 (3)N6—C16—C17—C181.5 (5)
C10—N3—C6—C71.5 (5)N5—C16—C17—C18179.0 (3)
C2—N2—C6—N31.4 (6)C16—C17—C18—C190.9 (6)
C2—N2—C6—C7179.8 (3)C17—C18—C19—C201.8 (7)
N3—C6—C7—C80.1 (6)C16—N6—C20—C191.9 (6)
N2—C6—C7—C8178.4 (3)C18—C19—C20—N60.4 (7)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O50.862.072.928 (5)174
N2—H2···N6ii0.862.273.129 (4)176
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C10H9N3)4](ClO4)2·2C2H6O
Mr1034.55
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)27.767 (4), 10.7067 (14), 18.144 (2)
β (°) 115.891 (9)
V3)4852.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.32 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.836, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
11042, 4315, 2875
Rint0.044
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.08
No. of reflections4315
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O50.862.072.928 (5)174.0
N2—H2···N6i0.862.273.129 (4)176.3
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The author is grateful to Shuren University for financial support.

References

First citationBiradha, K., Seward, C. M. & Zaworotko, J. (1999). Angew. Chem. Int. Ed. 1999, 38, 492–495.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationGudbjartson, H., Biradha, K., Poirier, K. & Zaworotko, M. J. (1999). J. Am. Chem. Soc. 121, 2599–2600.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhou, C. H., Wang, Y. Y., Li, D. S., Zhou, L. J., Liu, P. & Shi, Q. Z. (2006). Eur. J. Inorg. Chem. pp. 2437–2446.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds