organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Hy­droxy­benzyl­­idene)-3,4,5-tri­meth­oxy­benzohydrazide

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: minwangyu@126.com

(Received 30 January 2008; accepted 5 March 2008; online 7 May 2008)

The title compound, C17H18N2O5, was synthesized from 3,4,5-trimethoxy­benzohydrazide and 2-hydroxy­benzaldehyde. The dihedral angle between the planes of the two benzene rings is 29.9 (2)°. The crystal structure involves intra­molecular O—H⋯N, and inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Yang et al. (1996[Yang, Z. Y., Yang, R. D. & Yu, K. B. (1996). Polyhedron, 15, 3749-3753.]); Nawar et al. (2000[Nawar, N. & Hosny, N. M. (2000). Transition Met. Chem. 25, 1-8.]). Gardner et al. (1991[Gardner, T. S., Weins, R. & Lee, J. (1991). J Org Chem. 26, 1514-1530.]); Labouta et al. (1989[Labouta, I. M., Hassan, A. M., Aboulwafa, O. M. & Kader, O. (1989). Monatsh. Chem. 120, 571-574.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O5

  • Mr = 330.33

  • Monoclinic, P 21 /c

  • a = 15.348 (12) Å

  • b = 13.330 (11) Å

  • c = 8.299 (7) Å

  • β = 99.854 (16)°

  • V = 1673 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.10 × 0.06 × 0.04 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.991, Tmax = 0.995

  • 8200 measured reflections

  • 2952 independent reflections

  • 1945 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.194

  • S = 1.00

  • 2952 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.94 2.670 (4) 147
N2—H2⋯O2i 0.86 2.00 2.826 (4) 161 (1)
C7—H7⋯O2i 0.93 2.48 3.240 (5) 139
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,4,5-Trimethoxybenzohydrazide and their deviatives show moderate fungicidal and anti-bacterial activities (Gardner et al.,1991). The antibacterial activity of formylhydrazines and formylhydrazones has been reported by Labouta et al. (1989). Many derivatives of formylhydrazines have interesting biological properties. So we synthesized the title compound (I) and report here its crystal structure.

The molecular structure of (I) is shown in Fig. 1, where the dash lines indicate N–H···O and O—H···N hydrogen bonds (Table 2). The atoms C7, N1, N2, C8 and O2 almost share a same plane for its delocalized structure. The dihedral angle between the planes of the two phenyl rings is 29.9 (217)°.

In the crystal structure, there is a intramolecular O—H···N hydrogen bond and two intermolecular N—H···O and C—H···O hydrogen bonds.

Related literature top

For related literature, see: Yang et al. (1996); Nawar et al. (2000). Gardner et al. (1991); Labouta et al. (1989).

Experimental top

An ethanol solution (50 ml) of 3,4,5-trimethoxybenzohydrazide (0.01 mol) and 2-hydroxybenzaldehyde (0.01 mol) was refluxed and stirred for 4 h. The mixture was cooled and the resulting solid product, (I), was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in THF.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.96 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram for (I) showing three dimensional network formed via hydrogen bonding.
(E)-N'-(2-Hydroxybenzylidene)-3,4,5-trimethoxybenzohydrazide top
Crystal data top
C17H18N2O5F(000) = 696
Mr = 330.33Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2179 reflections
a = 15.348 (12) Åθ = 2.7–22.9°
b = 13.330 (11) ŵ = 0.10 mm1
c = 8.299 (7) ÅT = 273 K
β = 99.854 (16)°Needle, colourless
V = 1673 (2) Å30.10 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2952 independent reflections
Radiation source: fine-focus sealed tube1945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1418
Tmin = 0.991, Tmax = 0.995k = 1415
8200 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.194 w = 1/[σ2(Fo2) + (0.09P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2952 reflectionsΔρmax = 0.59 e Å3
219 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C17H18N2O5V = 1673 (2) Å3
Mr = 330.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.348 (12) ŵ = 0.10 mm1
b = 13.330 (11) ÅT = 273 K
c = 8.299 (7) Å0.10 × 0.06 × 0.04 mm
β = 99.854 (16)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2952 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1945 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.995Rint = 0.048
8200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
2952 reflectionsΔρmin = 0.26 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56784 (18)0.60473 (18)0.8299 (3)0.0620 (7)
H10.60080.64240.79040.093*
O20.72936 (16)0.85318 (16)0.7297 (3)0.0523 (7)
O30.81393 (18)1.13644 (15)0.3448 (4)0.0684 (8)
O40.92560 (17)1.04300 (17)0.1799 (3)0.0613 (8)
O50.96337 (16)0.84707 (17)0.2246 (3)0.0586 (7)
N10.67460 (17)0.66256 (18)0.6249 (3)0.0390 (6)
N20.72254 (17)0.72742 (18)0.5423 (3)0.0412 (7)
H20.73670.70840.45120.049*
C10.5635 (2)0.5152 (2)0.7521 (4)0.0445 (8)
C20.6102 (2)0.4977 (2)0.6245 (4)0.0423 (8)
C30.6039 (2)0.4020 (2)0.5511 (4)0.0541 (9)
H30.63440.38880.46580.065*
C40.5525 (3)0.3270 (3)0.6047 (5)0.0643 (11)
H40.54970.26360.55740.077*
C50.5060 (3)0.3479 (3)0.7282 (5)0.0651 (11)
H50.47080.29830.76290.078*
C60.5108 (3)0.4403 (3)0.8012 (4)0.0602 (10)
H60.47850.45300.88430.072*
C70.6621 (2)0.5750 (2)0.5607 (4)0.0421 (8)
H70.68740.56020.46930.051*
C80.7475 (2)0.8195 (2)0.6011 (4)0.0379 (7)
C90.7992 (2)0.8781 (2)0.4960 (4)0.0368 (7)
C100.7841 (2)0.9807 (2)0.4799 (4)0.0441 (8)
H100.74611.01230.54000.053*
C110.8259 (2)1.0356 (2)0.3738 (4)0.0461 (8)
C120.8839 (2)0.9881 (2)0.2853 (4)0.0460 (8)
C130.9029 (2)0.8862 (2)0.3110 (4)0.0428 (8)
C140.8592 (2)0.8308 (2)0.4139 (4)0.0415 (8)
H140.87010.76240.42790.050*
C150.7580 (3)1.1888 (3)0.4353 (6)0.0807 (14)
H15A0.69951.16100.41190.121*
H15B0.75601.25840.40530.121*
H15C0.78061.18240.55010.121*
C160.8877 (3)1.0316 (3)0.0131 (6)0.0787 (14)
H16A0.88320.96150.01380.118*
H16B0.92431.06440.05380.118*
H16C0.82981.06110.00620.118*
C171.0023 (3)0.7532 (3)0.2783 (5)0.0656 (11)
H17A1.02690.75720.39250.098*
H17B1.04830.73750.21710.098*
H17C0.95800.70170.26130.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.085 (2)0.0474 (14)0.0639 (17)0.0132 (13)0.0429 (14)0.0088 (12)
O20.0821 (17)0.0435 (13)0.0395 (14)0.0001 (11)0.0339 (12)0.0002 (10)
O30.0843 (19)0.0262 (12)0.108 (2)0.0009 (11)0.0555 (17)0.0053 (12)
O40.0757 (18)0.0431 (13)0.077 (2)0.0130 (12)0.0470 (15)0.0080 (12)
O50.0677 (16)0.0472 (14)0.0734 (18)0.0114 (12)0.0475 (14)0.0096 (12)
N10.0488 (16)0.0375 (14)0.0352 (15)0.0023 (11)0.0199 (12)0.0062 (11)
N20.0614 (17)0.0367 (14)0.0326 (15)0.0051 (12)0.0283 (13)0.0024 (11)
C10.059 (2)0.0382 (17)0.0386 (19)0.0069 (15)0.0148 (16)0.0011 (14)
C20.0508 (19)0.0364 (16)0.0417 (19)0.0023 (14)0.0135 (15)0.0034 (13)
C30.071 (2)0.0403 (18)0.054 (2)0.0005 (17)0.0179 (18)0.0032 (16)
C40.087 (3)0.0363 (18)0.066 (3)0.0093 (19)0.006 (2)0.0028 (17)
C50.086 (3)0.051 (2)0.056 (2)0.029 (2)0.009 (2)0.0073 (18)
C60.077 (3)0.062 (2)0.046 (2)0.0220 (19)0.0245 (19)0.0042 (17)
C70.053 (2)0.0424 (18)0.0355 (18)0.0009 (14)0.0201 (15)0.0022 (14)
C80.0511 (19)0.0370 (16)0.0299 (17)0.0027 (14)0.0188 (14)0.0058 (13)
C90.0451 (18)0.0351 (16)0.0339 (17)0.0007 (13)0.0169 (14)0.0011 (12)
C100.051 (2)0.0367 (17)0.051 (2)0.0017 (14)0.0265 (16)0.0048 (14)
C110.057 (2)0.0260 (15)0.061 (2)0.0032 (14)0.0271 (17)0.0020 (14)
C120.053 (2)0.0320 (16)0.060 (2)0.0071 (14)0.0305 (17)0.0021 (14)
C130.0484 (19)0.0369 (17)0.050 (2)0.0004 (14)0.0271 (16)0.0015 (14)
C140.053 (2)0.0328 (16)0.0429 (19)0.0012 (14)0.0213 (15)0.0014 (13)
C150.093 (3)0.0329 (19)0.128 (4)0.0065 (19)0.053 (3)0.003 (2)
C160.090 (3)0.079 (3)0.077 (3)0.001 (2)0.044 (3)0.033 (2)
C170.065 (2)0.069 (2)0.070 (3)0.024 (2)0.031 (2)0.009 (2)
Geometric parameters (Å, º) top
O1—C11.353 (4)C5—H50.9300
O1—H10.8200C6—H60.9300
O2—C81.233 (3)C7—H70.9300
O3—C111.373 (4)C8—C91.496 (4)
O3—C151.417 (4)C9—C141.387 (4)
O4—C121.379 (4)C9—C101.390 (4)
O4—C161.415 (5)C10—C111.384 (4)
O5—C131.369 (3)C10—H100.9300
O5—C171.424 (4)C11—C121.398 (4)
N1—C71.284 (4)C12—C131.399 (4)
N1—N21.389 (3)C13—C141.386 (4)
N2—C81.351 (4)C14—H140.9300
N2—H20.8600C15—H15A0.9600
C1—C61.389 (5)C15—H15B0.9600
C1—C21.396 (4)C15—H15C0.9600
C2—C31.410 (5)C16—H16A0.9600
C2—C71.456 (4)C16—H16B0.9600
C3—C41.393 (5)C16—H16C0.9600
C3—H30.9300C17—H17A0.9600
C4—C51.373 (5)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.369 (5)
C1—O1—H1109.5C10—C9—C8118.3 (3)
C11—O3—C15117.7 (3)C11—C10—C9119.6 (3)
C12—O4—C16113.9 (3)C11—C10—H10120.2
C13—O5—C17117.1 (3)C9—C10—H10120.2
C7—N1—N2114.5 (2)O3—C11—C10124.5 (3)
C8—N2—N1121.9 (2)O3—C11—C12115.4 (3)
C8—N2—H2119.1C10—C11—C12120.1 (3)
N1—N2—H2119.1O4—C12—C11120.0 (3)
O1—C1—C6118.5 (3)O4—C12—C13120.3 (3)
O1—C1—C2121.3 (3)C11—C12—C13119.6 (3)
C6—C1—C2120.2 (3)O5—C13—C14124.3 (3)
C1—C2—C3118.2 (3)O5—C13—C12115.6 (3)
C1—C2—C7122.8 (3)C14—C13—C12120.1 (3)
C3—C2—C7118.9 (3)C13—C14—C9119.5 (3)
C4—C3—C2120.8 (3)C13—C14—H14120.2
C4—C3—H3119.6C9—C14—H14120.2
C2—C3—H3119.6O3—C15—H15A109.5
C5—C4—C3119.2 (3)O3—C15—H15B109.5
C5—C4—H4120.4H15A—C15—H15B109.5
C3—C4—H4120.4O3—C15—H15C109.5
C6—C5—C4121.2 (3)H15A—C15—H15C109.5
C6—C5—H5119.4H15B—C15—H15C109.5
C4—C5—H5119.4O4—C16—H16A109.5
C5—C6—C1120.4 (3)O4—C16—H16B109.5
C5—C6—H6119.8H16A—C16—H16B109.5
C1—C6—H6119.8O4—C16—H16C109.5
N1—C7—C2122.9 (3)H16A—C16—H16C109.5
N1—C7—H7118.5H16B—C16—H16C109.5
C2—C7—H7118.5O5—C17—H17A109.5
O2—C8—N2123.5 (3)O5—C17—H17B109.5
O2—C8—C9122.3 (3)H17A—C17—H17B109.5
N2—C8—C9114.2 (2)O5—C17—H17C109.5
C14—C9—C10120.9 (3)H17A—C17—H17C109.5
C14—C9—C8120.8 (3)H17B—C17—H17C109.5
C7—N1—N2—C8174.6 (3)C8—C9—C10—C11175.1 (3)
O1—C1—C2—C3178.8 (3)C15—O3—C11—C103.0 (6)
C6—C1—C2—C31.5 (5)C15—O3—C11—C12178.0 (3)
O1—C1—C2—C73.6 (5)C9—C10—C11—O3178.1 (3)
C6—C1—C2—C7176.1 (3)C9—C10—C11—C120.9 (5)
C1—C2—C3—C40.1 (5)C16—O4—C12—C11102.2 (4)
C7—C2—C3—C4177.8 (3)C16—O4—C12—C1381.3 (4)
C2—C3—C4—C51.5 (6)O3—C11—C12—O41.1 (5)
C3—C4—C5—C61.2 (6)C10—C11—C12—O4179.9 (3)
C4—C5—C6—C10.4 (6)O3—C11—C12—C13177.6 (3)
O1—C1—C6—C5178.5 (4)C10—C11—C12—C133.4 (5)
C2—C1—C6—C51.8 (6)C17—O5—C13—C1418.9 (5)
N2—N1—C7—C2177.2 (3)C17—O5—C13—C12163.4 (3)
C1—C2—C7—N15.6 (5)O4—C12—C13—O50.7 (5)
C3—C2—C7—N1176.8 (3)C11—C12—C13—O5177.1 (3)
N1—N2—C8—O20.7 (5)O4—C12—C13—C14178.4 (3)
N1—N2—C8—C9179.5 (2)C11—C12—C13—C145.1 (5)
O2—C8—C9—C14143.6 (3)O5—C13—C14—C9179.9 (3)
N2—C8—C9—C1436.7 (4)C12—C13—C14—C92.5 (5)
O2—C8—C9—C1037.9 (4)C10—C9—C14—C131.8 (5)
N2—C8—C9—C10141.9 (3)C8—C9—C14—C13176.8 (3)
C14—C9—C10—C113.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.670 (4)147
N2—H2···O2i0.862.002.826 (4)161 (1)
C7—H7···O2i0.932.483.240 (5)139
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O5
Mr330.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)15.348 (12), 13.330 (11), 8.299 (7)
β (°) 99.854 (16)
V3)1673 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.10 × 0.06 × 0.04
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.991, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
8200, 2952, 1945
Rint0.048
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.194, 1.00
No. of reflections2952
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.670 (4)147
N2—H2···O2i0.862.002.826 (4)161 (1)
C7—H7···O2i0.932.483.240 (5)139
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Fund of Jiangsu Province (No. BK2006012).

References

First citationBruker (1997). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGardner, T. S., Weins, R. & Lee, J. (1991). J Org Chem. 26, 1514–1530.  CrossRef Web of Science Google Scholar
First citationLabouta, I. M., Hassan, A. M., Aboulwafa, O. M. & Kader, O. (1989). Monatsh. Chem. 120, 571–574.  CrossRef CAS Web of Science Google Scholar
First citationNawar, N. & Hosny, N. M. (2000). Transition Met. Chem. 25, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z. Y., Yang, R. D. & Yu, K. B. (1996). Polyhedron, 15, 3749–3753.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds