organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-N-[6-methyl-2,3-di­hydro-1,3-benzo­thia­zol-2-yl­­idene]benzene­sulfonamide

aFacultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col Chamilpa CP 62100, Cuernavaca Mor., Mexico, bUnidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de, Mexico, Tlalnepantla, Méx. 54090, Mexico, and cCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001 Col., Chamilpa, CP 62100, Cuernavaca Mor., Mexico
*Correspondence e-mail: tlahuext@ciq.uaem.mx

(Received 28 November 2007; accepted 3 December 2007; online 6 December 2007)

The title compound, C15H14N2O3S2, is of inter­est with respect to its biological activity. The crystal structure is stabilized by inter­molecular N—H⋯N, C—H⋯O and C—H⋯π hydrogen-bonding inter­actions, as well as offset ππ inter­actions [distance between the centroids of the aryl and thiazole rings of adjacent molecules of 3.954 (2) Å].

Related literature

For related literature, see: Su et al. (2006[Su, X., Vicker, N., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. J. & Potter, B. V. L. (2006). Mol. Cell. Endocrinol. 248, 214-217.]); Vicker et al. (2007[Vicker, N., Su, X., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. J. & Potter, B. V. L. (2007). J. Steroid Biochem. Mol. Biol. 104, 123-129.]); Siddiqui et al. (2007[Siddiqui, N., Pandeya, N. S., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255-259.]); Adams et al. (1996[Adams, H., Carver, F. J., Hunter, C. A., Morales, J. C. & Seward, E. M. (1996). Angew. Chem. Int. Ed. Engl. 35, 1542-1544.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, D.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Desiraju (1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]); Hanton et al. (1992[Hanton, L. R., Hunter, C. A. & Purvis, D. H. (1992). J. Chem. Soc. Chem. Commun. pp. 1134-1136.]); Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. pp. 101-109.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3S2

  • Mr = 334.40

  • Monoclinic, P 21 /c

  • a = 12.0173 (15) Å

  • b = 16.211 (2) Å

  • c = 7.7377 (10) Å

  • β = 99.973 (2)°

  • V = 1484.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 273 (2) K

  • 0.57 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.816, Tmax = 0.964

  • 12102 measured reflections

  • 2617 independent reflections

  • 2440 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.117

  • S = 1.15

  • 2617 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.89 (2) 2.07 (2) 2.948 (3) 169 (2)
C3—H3⋯O2i 0.93 2.41 3.248 (3) 150
C6—H6⋯O3ii 0.93 2.57 3.485 (3) 169
C9—H9⋯O1 0.93 2.51 2.894 (3) 105
C14—H14ACg3iii 0.96 2.76 3.433 (3) 128
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]. Cg3 is the centroid of the C8–C13 benzene ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SAINT-Plus-NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SAINT-Plus-NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-NT (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SAINT-Plus-NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Benzothiazole benzenesulfonamides are selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). They have a considerable potential use for the treatment of metabolic diseases, such as diabetes mellitus type 2 or obesity (Su et al., 2006; Vicker et al., 2007). This kind of compounds have also shown anticonvulsant activity (Siddiqui et al., 2007).

In order to assist our knowledge about the electronic and steric requirements to shown antihyperglycemic activity, we have determined the crystal structure of the title compound, which is a new chemical entity with potential use in the treatment of diabetes.

The title compound (I) crystallizes in the centrosymmetric monoclinic space group P21/c. The crystal structure is stabilized by strong hydrogen-bonding interactions N1—H1···N2, and weak hydrogen bonding interactions C—H···O, which are forming R22(8) motifs (Bernstein et al., 1995) Fig. 1, Table 2. In the crystal packing there are also π-facial hydrogen bonds between the methoxy group (C14) and C8—C13 benzene ring (O—CH3···π) (Hanton et al., 1992; Adams et al., 1996, Desiraju, 1991). The distance between C14 and the ring centroid (Cg3) is 3.433 (3) Å (Fig. 2, Table 2).

The crystal structure is also stabilized by offset π-π interactions between two adjacent molecules, with a distance between the centroids of the C1—C6 benzene ring (Cg2) and (S2/C7/N1/C2/C1) benzothiazol ring (Cg1) of 3.954 (2) Å (Fig. 2). This interaction is favourable by effect of polarization of the sulfonamid group (Hunter, 1994).

Related literature top

For related literature, see: Su et al. (2006); Vicker et al. (2007); Siddiqui et al. (2007); Adams et al. (1996); Bernstein et al. (1995); Desiraju (1991); Hanton et al. (1992); Hunter (1994).

Experimental top

To a solution of 2-amino-6-methylbenzothiazole (0.0030 mol) in dichloromethane (10 ml) were added triethylamine (1.1 eq), and a catalytic amount of dimethylaminopyridine (DMAP). After stirring at room temperature for 15 min, a solution of 4-methoxybenzenesulfonyl chloride (0.0033 mol, 1.1 eq) in 5 ml of dichloromethane was added droopingly. The reaction mixture was stirred at 313 K under nitrogen atmosphere for 6 h. After complete conversion as indicated by TLC, the solvent was removed in vacuo, the residue was neutralized with saturated NaHCO3 solution, and the aqueous layer was extracted with ethyl acetate (3 x 15 ml), washed with water (3 x 20 ml), and dried over anhydrous Na2SO4. The solvent was evaporated in vacuo to give a yellow solid (m.p. 534.4 K). Single crystals of (I) were obtained from acetonitrile.

Refinement top

The hydrogen H1 was located in a difference Fourier map and was refined freely. The other H atoms were constrained to the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl) = 1.2 Ueq(Caryl); C—Hmethyl = 0.96 Å, Uiso(H) = 1.5 Ueq(Cmethyl)].

Structure description top

Benzothiazole benzenesulfonamides are selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). They have a considerable potential use for the treatment of metabolic diseases, such as diabetes mellitus type 2 or obesity (Su et al., 2006; Vicker et al., 2007). This kind of compounds have also shown anticonvulsant activity (Siddiqui et al., 2007).

In order to assist our knowledge about the electronic and steric requirements to shown antihyperglycemic activity, we have determined the crystal structure of the title compound, which is a new chemical entity with potential use in the treatment of diabetes.

The title compound (I) crystallizes in the centrosymmetric monoclinic space group P21/c. The crystal structure is stabilized by strong hydrogen-bonding interactions N1—H1···N2, and weak hydrogen bonding interactions C—H···O, which are forming R22(8) motifs (Bernstein et al., 1995) Fig. 1, Table 2. In the crystal packing there are also π-facial hydrogen bonds between the methoxy group (C14) and C8—C13 benzene ring (O—CH3···π) (Hanton et al., 1992; Adams et al., 1996, Desiraju, 1991). The distance between C14 and the ring centroid (Cg3) is 3.433 (3) Å (Fig. 2, Table 2).

The crystal structure is also stabilized by offset π-π interactions between two adjacent molecules, with a distance between the centroids of the C1—C6 benzene ring (Cg2) and (S2/C7/N1/C2/C1) benzothiazol ring (Cg1) of 3.954 (2) Å (Fig. 2). This interaction is favourable by effect of polarization of the sulfonamid group (Hunter, 1994).

For related literature, see: Su et al. (2006); Vicker et al. (2007); Siddiqui et al. (2007); Adams et al. (1996); Bernstein et al. (1995); Desiraju (1991); Hanton et al. (1992); Hunter (1994).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2000); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids, H atoms are shown as small spheres of arbitrary radius and the atomic numbering. The intermolecular hydrogen bonds N—H···N and C—H···O, which are forming the R22(8) motifs are shown as dotted lines.
[Figure 2] Fig. 2. A view of the π-facial hydrogen bonds (OCH3···π) and offset π-π interactions. Dashed lines indicate the interaction between methoxy group (C14) and centroid Cg3, as well as between centroids (Cg1, Cg2).
4-Methoxy-N-[6-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidene]benzenesulfonamide top
Crystal data top
C15H14N2O3S2F(000) = 696
Mr = 334.40Dx = 1.496 Mg m3
Monoclinic, P21/cMelting point: 534.4 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.0173 (15) ÅCell parameters from 2617 reflections
b = 16.211 (2) Åθ = 1.7–25.0°
c = 7.7377 (10) ŵ = 0.37 mm1
β = 99.973 (2)°T = 273 K
V = 1484.6 (3) Å3Rectangular prism, yellow
Z = 40.57 × 0.16 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2617 independent reflections
Radiation source: fine-focus sealed tube2440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 1.7°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1918
Tmin = 0.816, Tmax = 0.964l = 99
12102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.9002P]
where P = (Fo2 + 2Fc2)/3
2617 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H14N2O3S2V = 1484.6 (3) Å3
Mr = 334.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0173 (15) ŵ = 0.37 mm1
b = 16.211 (2) ÅT = 273 K
c = 7.7377 (10) Å0.57 × 0.16 × 0.10 mm
β = 99.973 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2617 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2440 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.964Rint = 0.032
12102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.41 e Å3
2617 reflectionsΔρmin = 0.20 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1795 (2)0.78238 (17)0.4365 (3)0.0450 (6)
C20.0744 (2)0.80223 (16)0.4774 (3)0.0422 (6)
C30.0003 (2)0.74059 (17)0.5022 (4)0.0512 (7)
H30.07040.75310.53070.061*
C40.0318 (3)0.66009 (18)0.4836 (4)0.0556 (7)
H40.01850.61830.49930.067*
C50.1359 (3)0.63832 (18)0.4425 (4)0.0524 (7)
C60.2108 (2)0.70089 (18)0.4188 (4)0.0498 (7)
H60.28120.68830.39130.060*
C70.1455 (2)0.93390 (16)0.4535 (3)0.0402 (6)
C80.3207 (2)1.09049 (15)0.6440 (3)0.0385 (6)
C90.4280 (2)1.05758 (17)0.6913 (4)0.0455 (6)
H90.45761.02340.61390.055*
C100.4905 (2)1.07537 (17)0.8519 (4)0.0469 (6)
H100.56301.05400.88240.056*
C110.4465 (2)1.12510 (15)0.9704 (3)0.0408 (6)
C120.3377 (2)1.15595 (17)0.9262 (4)0.0451 (6)
H120.30681.18771.00610.054*
C130.2755 (2)1.13914 (16)0.7626 (4)0.0440 (6)
H130.20301.16050.73160.053*
C140.4823 (3)1.1987 (2)1.2418 (4)0.0591 (8)
H14A0.46871.25101.18380.089*
H14B0.54051.20461.34290.089*
H14C0.41411.17981.27780.089*
C150.1682 (3)0.54964 (19)0.4239 (4)0.0669 (9)
H15A0.18490.52460.53790.100*
H15B0.23370.54690.36860.100*
H15C0.10680.52080.35340.100*
H10.003 (2)0.9100 (16)0.509 (3)0.046 (8)*
N10.05952 (18)0.88679 (13)0.4860 (3)0.0426 (5)
N20.13799 (17)1.01569 (13)0.4570 (3)0.0434 (5)
O10.31808 (16)1.03121 (12)0.3323 (2)0.0513 (5)
O20.19594 (16)1.14977 (12)0.3663 (3)0.0563 (5)
O30.51706 (16)1.14040 (12)1.1242 (3)0.0541 (5)
S10.24400 (5)1.07274 (4)0.43153 (8)0.0417 (2)
S20.25626 (5)0.87158 (5)0.40816 (9)0.0480 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (14)0.0497 (16)0.0401 (14)0.0028 (12)0.0015 (11)0.0023 (12)
C20.0412 (13)0.0448 (15)0.0388 (13)0.0035 (12)0.0014 (11)0.0044 (11)
C30.0462 (15)0.0451 (16)0.0613 (17)0.0012 (13)0.0062 (13)0.0020 (14)
C40.0613 (18)0.0438 (16)0.0585 (18)0.0095 (14)0.0017 (14)0.0016 (13)
C50.0669 (18)0.0441 (16)0.0414 (15)0.0084 (14)0.0041 (13)0.0028 (12)
C60.0512 (16)0.0512 (17)0.0457 (15)0.0115 (13)0.0042 (12)0.0017 (12)
C70.0334 (12)0.0466 (15)0.0395 (13)0.0003 (11)0.0039 (10)0.0051 (11)
C80.0346 (12)0.0335 (13)0.0491 (14)0.0050 (10)0.0119 (11)0.0019 (11)
C90.0432 (14)0.0447 (15)0.0512 (15)0.0082 (12)0.0150 (12)0.0060 (12)
C100.0392 (14)0.0462 (16)0.0561 (16)0.0104 (12)0.0106 (12)0.0031 (12)
C110.0416 (13)0.0344 (13)0.0472 (14)0.0011 (11)0.0097 (11)0.0001 (11)
C120.0418 (14)0.0442 (15)0.0526 (16)0.0034 (12)0.0173 (12)0.0077 (12)
C130.0313 (12)0.0462 (15)0.0557 (16)0.0038 (11)0.0108 (11)0.0052 (12)
C140.0651 (19)0.0595 (19)0.0521 (17)0.0015 (15)0.0086 (14)0.0137 (14)
C150.090 (2)0.0467 (18)0.0602 (19)0.0139 (17)0.0018 (17)0.0001 (15)
N10.0339 (11)0.0405 (13)0.0538 (13)0.0021 (10)0.0084 (10)0.0054 (10)
N20.0348 (11)0.0393 (12)0.0568 (13)0.0015 (9)0.0098 (10)0.0064 (10)
O10.0471 (10)0.0587 (13)0.0518 (11)0.0061 (9)0.0184 (9)0.0104 (9)
O20.0562 (12)0.0495 (12)0.0611 (12)0.0012 (9)0.0046 (10)0.0077 (9)
O30.0507 (11)0.0564 (12)0.0532 (11)0.0081 (9)0.0031 (9)0.0098 (9)
S10.0377 (3)0.0418 (4)0.0469 (4)0.0029 (3)0.0109 (3)0.0028 (3)
S20.0389 (4)0.0487 (4)0.0582 (4)0.0048 (3)0.0137 (3)0.0031 (3)
Geometric parameters (Å, º) top
C1—C61.387 (4)C9—H90.9300
C1—C21.391 (4)C10—C111.392 (4)
C1—S21.749 (3)C10—H100.9300
C2—C31.378 (4)C11—O31.359 (3)
C2—N11.385 (3)C11—C121.387 (4)
C3—C41.375 (4)C12—C131.381 (4)
C3—H30.9300C12—H120.9300
C4—C51.388 (4)C13—H130.9300
C4—H40.9300C14—O31.424 (3)
C5—C61.389 (4)C14—H14A0.9600
C5—C151.502 (4)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—N21.330 (3)C15—H15A0.9600
C7—N11.343 (3)C15—H15B0.9600
C7—S21.754 (3)C15—H15C0.9600
C8—C91.385 (4)N1—H10.89 (3)
C8—C131.390 (3)N2—S11.614 (2)
C8—S11.764 (3)O1—S11.4394 (19)
C9—C101.367 (4)O2—S11.431 (2)
C6—C1—C2121.0 (3)C12—C11—C10119.7 (2)
C6—C1—S2128.1 (2)C13—C12—C11119.5 (2)
C2—C1—S2110.9 (2)C13—C12—H12120.2
C3—C2—N1128.2 (2)C11—C12—H12120.2
C3—C2—C1120.1 (3)C12—C13—C8120.4 (2)
N1—C2—C1111.7 (2)C12—C13—H13119.8
C4—C3—C2118.2 (3)C8—C13—H13119.8
C4—C3—H3120.9O3—C14—H14A109.5
C2—C3—H3120.9O3—C14—H14B109.5
C3—C4—C5123.0 (3)H14A—C14—H14B109.5
C3—C4—H4118.5O3—C14—H14C109.5
C5—C4—H4118.5H14A—C14—H14C109.5
C4—C5—C6118.3 (3)H14B—C14—H14C109.5
C4—C5—C15121.6 (3)C5—C15—H15A109.5
C6—C5—C15120.1 (3)C5—C15—H15B109.5
C1—C6—C5119.3 (3)H15A—C15—H15B109.5
C1—C6—H6120.4C5—C15—H15C109.5
C5—C6—H6120.4H15A—C15—H15C109.5
N2—C7—N1120.4 (2)H15B—C15—H15C109.5
N2—C7—S2129.42 (19)C7—N1—C2116.3 (2)
N1—C7—S2110.18 (19)C7—N1—H1120.3 (17)
C9—C8—C13119.8 (2)C2—N1—H1123.4 (17)
C9—C8—S1119.73 (19)C7—N2—S1120.74 (17)
C13—C8—S1120.45 (19)C11—O3—C14118.2 (2)
C10—C9—C8119.9 (2)O2—S1—O1117.99 (12)
C10—C9—H9120.1O2—S1—N2105.33 (12)
C8—C9—H9120.1O1—S1—N2111.79 (11)
C9—C10—C11120.7 (2)O2—S1—C8107.49 (12)
C9—C10—H10119.7O1—S1—C8107.55 (12)
C11—C10—H10119.7N2—S1—C8106.02 (12)
O3—C11—C12124.7 (2)C1—S2—C790.91 (12)
O3—C11—C10115.6 (2)
C6—C1—C2—C30.4 (4)S1—C8—C13—C12177.1 (2)
S2—C1—C2—C3178.9 (2)N2—C7—N1—C2179.3 (2)
C6—C1—C2—N1179.0 (2)S2—C7—N1—C20.1 (3)
S2—C1—C2—N10.5 (3)C3—C2—N1—C7179.0 (3)
N1—C2—C3—C4178.7 (3)C1—C2—N1—C70.4 (3)
C1—C2—C3—C40.6 (4)N1—C7—N2—S1175.70 (19)
C2—C3—C4—C50.5 (4)S2—C7—N2—S15.1 (3)
C3—C4—C5—C60.1 (4)C12—C11—O3—C146.8 (4)
C3—C4—C5—C15179.8 (3)C10—C11—O3—C14172.5 (2)
C2—C1—C6—C50.1 (4)C7—N2—S1—O2155.3 (2)
S2—C1—C6—C5178.3 (2)C7—N2—S1—O125.9 (2)
C4—C5—C6—C10.1 (4)C7—N2—S1—C891.0 (2)
C15—C5—C6—C1180.0 (3)C9—C8—S1—O2134.5 (2)
C13—C8—C9—C102.2 (4)C13—C8—S1—O243.7 (2)
S1—C8—C9—C10176.0 (2)C9—C8—S1—O16.5 (2)
C8—C9—C10—C111.2 (4)C13—C8—S1—O1171.7 (2)
C9—C10—C11—O3178.4 (2)C9—C8—S1—N2113.2 (2)
C9—C10—C11—C121.0 (4)C13—C8—S1—N268.6 (2)
O3—C11—C12—C13177.1 (2)C6—C1—S2—C7178.7 (3)
C10—C11—C12—C132.1 (4)C2—C1—S2—C70.4 (2)
C11—C12—C13—C81.1 (4)N2—C7—S2—C1179.5 (2)
C9—C8—C13—C121.1 (4)N1—C7—S2—C10.15 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (2)2.07 (2)2.948 (3)169 (2)
C3—H3···O2i0.932.413.248 (3)150
C6—H6···O3ii0.932.573.485 (3)169
C9—H9···O10.932.512.894 (3)105
C14—H14A···Cg3iii0.932.763.433 (3)128
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O3S2
Mr334.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)12.0173 (15), 16.211 (2), 7.7377 (10)
β (°) 99.973 (2)
V3)1484.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.57 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.816, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
12102, 2617, 2440
Rint0.032
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.15
No. of reflections2617
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.20

Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker, 2000), SAINT-Plus-NT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (2)2.07 (2)2.948 (3)169 (2)
C3—H3···O2i0.932.413.248 (3)150
C6—H6···O3ii0.932.573.485 (3)169
C9—H9···O10.932.512.894 (3)105
C14—H14A···Cg3iii0.932.763.433 (3)128
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by CONACyT under grants 55591 and 3562P-E; PAPCA (FESI-UNAM), PAPIIT IN 203205 (DGAPA-UNAM).

References

First citationAdams, H., Carver, F. J., Hunter, C. A., Morales, J. C. & Seward, E. M. (1996). Angew. Chem. Int. Ed. Engl. 35, 1542–1544.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, D.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.618), SAINT-Plus-NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationHanton, L. R., Hunter, C. A. & Purvis, D. H. (1992). J. Chem. Soc. Chem. Commun. pp. 1134–1136.  CrossRef Web of Science Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. pp. 101–109.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiddiqui, N., Pandeya, N. S., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, X., Vicker, N., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. J. & Potter, B. V. L. (2006). Mol. Cell. Endocrinol. 248, 214-217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVicker, N., Su, X., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. J. & Potter, B. V. L. (2007). J. Steroid Biochem. Mol. Biol. 104, 123–129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds