Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the centrosymmetric title compound, [Mn2(C4H2O4)(NO3)2(C14H12N2)2(H2O)2], each Mn atom is six-coordinate in a distorted octa­hedral geometry. Mol­ecules form stacks by π–π inter­actions (centroid–centroid distances of 3.826, 3.708 and 3.719 Å). The water mol­ecules act as donors to form O—H...O hydrogen bonds. Moreover, the mol­ecules are linked into chains along the a axis by C—H...O inter­molecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059090/at2488sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059090/at2488Isup2.hkl
Contains datablock I

CCDC reference: 672717

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.043
  • wR factor = 0.134
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) ....... 1 PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Mn1 - O1 .. 28.02 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Mn1 - O1W .. 15.52 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Mn1 - O2 .. 30.30 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Mn1 - O3 .. 11.46 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Mn1 - N2 .. 10.66 su
Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - N1 .. 8.43 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Mn1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C1 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C14 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 6 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metal-phenanthroline complexes are good indicators for hydridization detection in DNA electrochemical biosensors (Wang et al., 1996). In our search for new indicators, the title complex was synthesized and its structure is presented here.

The binuclear manganese complex in (I) possesses a crystallographically imposed centre of symmetry (Fig. 1). Each MnII atom is six-coordinated by two N atoms from one 9,10-dimethyl-phennathroline ligand, one O atoms from water, one O atom from fumaric acid, and two O atom from nitrate anion in a distorted octahedral environment. The axial position is occupied by water molecule O atom and one N atom from 9,10-dimethyl-phennathroline ligand, with an O1W—Mn1—N1 bond angle of 167.68 (1)°.

In the crystal structure, the short interplanar distances between the phenanthroline moieties suggest strong π···π interactions. The distances between benzene rings are Cg1···Cg2iii = 3.826, Cg1···Cg3iii = 3.708 and Cg3···Cg3iii = 3.719 Å, where Cg1, Cg2 and Cg3 denote the centroids of N1/C2—C5/C13, N2/C8—C12 and C5—C8/C12/C13 rings, respectively, which contribure to the crystal packing [symmetry code: (i) -x + 1, -y, -z + 1]. The water molecules act as donors to form O—H···O hydrogen bonds (Table 2). Moreover, the molecules are linked into chains along the a axis by C6—H6A···O4 and C9—H9A···O1 intermolecular hydrogen bonds.

Related literature top

For details of the DNA electrochemical biosensors of metal–phenanthroline complexes, see: Wang et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 2,9-dimethyl-1,10-phenanthroline (0.21 g, 1 mmol) and fumaric acid (0.058 g, 0.5 mmol) in ethanol (10 ml) was added a solution of Mn(Ac)2 (0.11 g, 1 mmol) in distilled water (10 ml). The mixture was stirred and then refluxed for 2 h. The hot solution was then filtered into another flask containing ethanol-water. Brown crystals appeared over a period of one week by slow evaporation at room temperature.

Refinement top

All H atoms were located in difference Fourier map. Water H atoms were refined with O1W—H1W1 and O1W—H2W1 distance restrains of 0.82 Å [1.5 Ueq(O)]. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(methyl C) H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the b axis. Hydrogen bonds are indicated by dashed lines.
µ-Fumarato-κ4O,O';O'',O'''-bis[aqua(2,9- dimethyl-1,10-phenanthroline-κ2N,N)(nitrato- κ2O,O')manganese(II)] top
Crystal data top
[Mn2(C4H2O4)(NO3)2(C14H12N2)2(H2O)2]F(000) = 820
Mr = 800.50Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5923 reflections
a = 12.034 (2) Åθ = 2.2–26.0°
b = 9.1824 (16) ŵ = 0.83 mm1
c = 16.416 (2) ÅT = 293 K
β = 113.532 (10)°Block, colourless
V = 1663.1 (4) Å30.42 × 0.33 × 0.20 mm
Z = 2
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3266 independent reflections
Radiation source: fine-focus sealed tube2951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 8.33 pixels mm-1θmax = 26.1°, θmin = 1.9°
ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1011
Tmin = 0.723, Tmax = 0.852l = 2018
8963 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0858P)2 + 1.1575P]
where P = (Fo2 + 2Fc2)/3
3266 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Mn2(C4H2O4)(NO3)2(C14H12N2)2(H2O)2]V = 1663.1 (4) Å3
Mr = 800.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.034 (2) ŵ = 0.83 mm1
b = 9.1824 (16) ÅT = 293 K
c = 16.416 (2) Å0.42 × 0.33 × 0.20 mm
β = 113.532 (10)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3266 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2951 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.852Rint = 0.013
8963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.06Δρmax = 0.77 e Å3
3266 reflectionsΔρmin = 0.86 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.17583 (3)0.18538 (4)0.32962 (2)0.03045 (16)
O20.1578 (2)0.4355 (3)0.31837 (15)0.0611 (6)
C130.4425 (3)0.1767 (3)0.43220 (19)0.0417 (6)
C170.0603 (2)0.0233 (3)0.40796 (17)0.0428 (6)
N10.3457 (2)0.2379 (3)0.44183 (15)0.0428 (5)
O10.2395 (2)0.3349 (2)0.2384 (2)0.0683 (7)
O30.0941 (2)0.1538 (2)0.41663 (15)0.0567 (5)
N20.3019 (2)0.0450 (2)0.30670 (14)0.0397 (5)
N30.2067 (2)0.4487 (2)0.26373 (17)0.0484 (6)
O40.07726 (19)0.0591 (2)0.35325 (14)0.0544 (5)
C120.4195 (2)0.0740 (3)0.36088 (18)0.0414 (6)
C180.0025 (2)0.0354 (3)0.46628 (18)0.0441 (6)
H18A0.03190.12780.45390.066*
C20.3652 (3)0.3286 (3)0.5095 (2)0.0511 (7)
C80.5185 (3)0.0068 (3)0.3506 (2)0.0504 (7)
C70.6398 (3)0.0422 (4)0.4098 (3)0.0644 (9)
H7A0.70470.00160.40230.077*
C90.4917 (3)0.0945 (4)0.2813 (2)0.0600 (8)
H9A0.55390.14060.27130.072*
C50.5638 (3)0.2069 (3)0.4898 (2)0.0528 (7)
C100.3740 (3)0.1249 (3)0.2288 (2)0.0565 (8)
H10A0.35600.19410.18390.068*
C30.4854 (3)0.3626 (4)0.5702 (2)0.0635 (9)
H3A0.49760.42560.61740.076*
C140.1502 (3)0.0849 (4)0.1806 (2)0.0568 (7)
H14A0.09650.02750.19790.085*
H14B0.13360.18640.18430.085*
H14C0.13800.06130.12070.085*
C40.5817 (3)0.3042 (4)0.5597 (2)0.0633 (9)
H4A0.65990.32840.59890.076*
C110.2793 (3)0.0527 (3)0.24174 (18)0.0442 (6)
C10.2607 (4)0.3946 (4)0.5233 (2)0.0686 (9)
H1A0.18620.36160.47760.103*
H1B0.26520.49880.52100.103*
H1C0.26340.36570.58030.103*
C60.6609 (3)0.1381 (4)0.4763 (2)0.0626 (9)
H6A0.74040.15970.51400.075*
O1W0.0156 (2)0.1824 (2)0.21622 (17)0.0578 (6)
H1W10.03270.12650.22370.069*
H2W10.00540.26610.19990.087*
O50.2199 (2)0.5687 (3)0.23736 (19)0.0756 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0309 (2)0.0322 (2)0.0326 (2)0.00011 (12)0.01727 (17)0.00015 (13)
O20.0537 (12)0.0752 (16)0.0575 (13)0.0015 (11)0.0255 (10)0.0064 (11)
C130.0423 (14)0.0407 (14)0.0415 (14)0.0010 (10)0.0162 (11)0.0109 (10)
C170.0358 (12)0.0532 (15)0.0381 (13)0.0041 (11)0.0136 (10)0.0003 (11)
N10.0481 (12)0.0426 (12)0.0398 (11)0.0047 (10)0.0198 (9)0.0004 (9)
O10.0637 (15)0.0486 (13)0.102 (2)0.0047 (10)0.0423 (14)0.0012 (12)
O30.0667 (14)0.0573 (12)0.0567 (12)0.0170 (10)0.0358 (11)0.0034 (10)
N20.0453 (12)0.0376 (11)0.0415 (11)0.0011 (9)0.0228 (9)0.0032 (9)
N30.0459 (12)0.0379 (12)0.0585 (14)0.0027 (9)0.0178 (11)0.0094 (10)
O40.0573 (12)0.0651 (13)0.0474 (11)0.0009 (10)0.0278 (9)0.0037 (10)
C120.0426 (13)0.0400 (13)0.0451 (13)0.0035 (10)0.0213 (11)0.0132 (11)
C180.0422 (13)0.0474 (15)0.0442 (13)0.0074 (11)0.0189 (11)0.0016 (11)
C20.0658 (19)0.0458 (16)0.0423 (15)0.0082 (13)0.0223 (14)0.0016 (11)
C80.0516 (15)0.0492 (15)0.0602 (17)0.0110 (12)0.0327 (14)0.0188 (13)
C70.0453 (16)0.074 (2)0.078 (2)0.0169 (15)0.0287 (15)0.0304 (19)
C90.068 (2)0.0586 (18)0.070 (2)0.0212 (15)0.0448 (17)0.0157 (16)
C50.0458 (15)0.0536 (17)0.0506 (16)0.0047 (13)0.0104 (13)0.0191 (13)
C100.080 (2)0.0460 (16)0.0567 (17)0.0093 (15)0.0415 (17)0.0026 (14)
C30.079 (2)0.0575 (18)0.0435 (16)0.0178 (17)0.0134 (15)0.0053 (14)
C140.0668 (19)0.0561 (17)0.0536 (17)0.0095 (15)0.0304 (15)0.0129 (14)
C40.0570 (19)0.064 (2)0.0495 (18)0.0160 (15)0.0014 (15)0.0098 (14)
C110.0577 (16)0.0393 (13)0.0441 (14)0.0016 (12)0.0293 (12)0.0020 (11)
C10.084 (2)0.070 (2)0.063 (2)0.0124 (18)0.0406 (19)0.0252 (17)
C60.0400 (15)0.071 (2)0.068 (2)0.0019 (15)0.0119 (14)0.0243 (18)
O1W0.0517 (12)0.0504 (13)0.0666 (14)0.0075 (9)0.0186 (11)0.0087 (9)
Geometric parameters (Å, º) top
Mn1—O32.053 (2)C8—C91.404 (5)
Mn1—O1W2.078 (2)C8—C71.430 (5)
Mn1—N22.136 (2)C7—C61.345 (6)
Mn1—N12.191 (2)C7—H7A0.9300
Mn1—O22.307 (3)C9—C101.361 (5)
Mn1—O12.372 (3)C9—H9A0.9300
O2—N31.260 (3)C5—C41.401 (5)
C13—N11.358 (4)C5—C61.422 (5)
C13—C51.415 (4)C10—C111.406 (4)
C13—C121.441 (4)C10—H10A0.9300
C17—O31.255 (4)C3—C41.349 (6)
C17—O41.251 (3)C3—H3A0.9300
C17—C181.491 (4)C14—C111.505 (4)
N1—C21.333 (4)C14—H14A0.9600
O1—N31.246 (3)C14—H14B0.9600
N2—C111.336 (4)C14—H14C0.9600
N2—C121.364 (3)C4—H4A0.9300
N3—O51.217 (4)C1—H1A0.9600
C12—C81.411 (4)C1—H1B0.9600
C18—C18i1.306 (5)C1—H1C0.9600
C18—H18A0.9300C6—H6A0.9300
C2—C31.425 (5)O1W—H1W10.8200
C2—C11.493 (5)O1W—H2W10.8199
O3—Mn1—O1W95.18 (10)C9—C8—C12117.1 (3)
O3—Mn1—N2127.51 (9)C9—C8—C7122.9 (3)
O1W—Mn1—N2107.74 (9)C12—C8—C7120.0 (3)
O3—Mn1—N189.52 (9)C6—C7—C8120.8 (3)
O1W—Mn1—N1167.68 (8)C6—C7—H7A119.6
N2—Mn1—N177.92 (9)C8—C7—H7A119.6
O3—Mn1—O298.08 (8)C10—C9—C8119.6 (3)
O1W—Mn1—O285.28 (8)C10—C9—H9A120.2
N2—Mn1—O2129.58 (8)C8—C9—H9A120.2
N1—Mn1—O282.78 (9)C13—C5—C4116.9 (3)
O3—Mn1—O1152.37 (9)C13—C5—C6120.1 (3)
O1W—Mn1—O181.98 (9)C4—C5—C6123.0 (3)
N2—Mn1—O178.87 (8)C9—C10—C11120.6 (3)
N1—Mn1—O188.57 (9)C9—C10—H10A119.7
O2—Mn1—O154.35 (8)C11—C10—H10A119.7
N3—O2—Mn195.62 (18)C4—C3—C2120.5 (3)
N1—C13—C5123.0 (3)C4—C3—H3A119.8
N1—C13—C12118.1 (2)C2—C3—H3A119.8
C5—C13—C12118.9 (3)C11—C14—H14A109.5
O3—C17—O4121.4 (3)C11—C14—H14B109.5
O3—C17—C18119.0 (3)H14A—C14—H14B109.5
O4—C17—C18119.6 (3)C11—C14—H14C109.5
C13—N1—C2118.8 (3)H14A—C14—H14C109.5
C13—N1—Mn1111.50 (18)H14B—C14—H14C109.5
C2—N1—Mn1129.3 (2)C3—C4—C5119.9 (3)
N3—O1—Mn192.88 (18)C3—C4—H4A120.0
C17—O3—Mn1106.22 (18)C5—C4—H4A120.0
C11—N2—C12118.6 (2)N2—C11—C10121.2 (3)
C11—N2—Mn1127.84 (19)N2—C11—C14119.4 (2)
C12—N2—Mn1113.10 (17)C10—C11—C14119.4 (3)
O5—N3—O1122.5 (3)C2—C1—H1A109.5
O5—N3—O2120.3 (3)C2—C1—H1B109.5
O1—N3—O2117.1 (2)H1A—C1—H1B109.5
N2—C12—C13118.0 (2)C2—C1—H1C109.5
N2—C12—C8122.9 (3)H1A—C1—H1C109.5
C13—C12—C8119.1 (3)H1B—C1—H1C109.5
C18i—C18—C17123.8 (3)C7—C6—C5121.1 (3)
C18i—C18—H18A118.1C7—C6—H6A119.4
C17—C18—H18A118.1C5—C6—H6A119.4
N1—C2—C3120.8 (3)Mn1—O1W—H1W1109.5
N1—C2—C1120.1 (3)Mn1—O1W—H2W1109.6
C3—C2—C1119.1 (3)H1W1—O1W—H2W1119.4
O3—Mn1—O2—N3178.89 (17)Mn1—O2—N3—O5179.0 (2)
O1W—Mn1—O2—N384.32 (17)Mn1—O2—N3—O11.4 (3)
N2—Mn1—O2—N324.9 (2)C11—N2—C12—C13178.3 (2)
N1—Mn1—O2—N392.62 (17)Mn1—N2—C12—C138.5 (3)
O1—Mn1—O2—N30.82 (16)C11—N2—C12—C80.9 (4)
C5—C13—N1—C21.4 (4)Mn1—N2—C12—C8172.3 (2)
C12—C13—N1—C2177.4 (2)N1—C13—C12—N20.4 (3)
C5—C13—N1—Mn1172.5 (2)C5—C13—C12—N2179.2 (2)
C12—C13—N1—Mn18.8 (3)N1—C13—C12—C8178.8 (2)
O3—Mn1—N1—C13138.51 (18)C5—C13—C12—C80.0 (4)
O1W—Mn1—N1—C13108.9 (4)O3—C17—C18—C18i8.6 (5)
N2—Mn1—N1—C139.86 (17)O4—C17—C18—C18i169.5 (4)
O2—Mn1—N1—C13123.29 (18)C13—N1—C2—C30.9 (4)
O1—Mn1—N1—C1369.06 (18)Mn1—N1—C2—C3171.7 (2)
O3—Mn1—N1—C248.5 (2)C13—N1—C2—C1178.3 (3)
O1W—Mn1—N1—C264.2 (5)Mn1—N1—C2—C19.1 (4)
N2—Mn1—N1—C2177.1 (3)N2—C12—C8—C90.4 (4)
O2—Mn1—N1—C249.7 (2)C13—C12—C8—C9178.8 (2)
O1—Mn1—N1—C2104.0 (2)N2—C12—C8—C7180.0 (2)
O3—Mn1—O1—N34.9 (3)C13—C12—C8—C70.8 (4)
O1W—Mn1—O1—N390.76 (19)C9—C8—C7—C6178.8 (3)
N2—Mn1—O1—N3159.3 (2)C12—C8—C7—C60.7 (5)
N1—Mn1—O1—N381.31 (19)C12—C8—C9—C100.9 (4)
O2—Mn1—O1—N30.82 (16)C7—C8—C9—C10178.6 (3)
O4—C17—O3—Mn11.0 (3)N1—C13—C5—C40.5 (4)
C18—C17—O3—Mn1176.98 (19)C12—C13—C5—C4178.2 (2)
O1W—Mn1—O3—C1772.8 (2)N1—C13—C5—C6179.6 (3)
N2—Mn1—O3—C1744.2 (2)C12—C13—C5—C60.8 (4)
N1—Mn1—O3—C17118.6 (2)C8—C9—C10—C111.8 (5)
O2—Mn1—O3—C17158.80 (19)N1—C2—C3—C40.5 (5)
O1—Mn1—O3—C17155.4 (2)C1—C2—C3—C4179.7 (3)
O3—Mn1—N2—C1197.9 (2)C2—C3—C4—C51.3 (5)
O1W—Mn1—N2—C1113.5 (2)C13—C5—C4—C30.8 (5)
N1—Mn1—N2—C11177.8 (2)C6—C5—C4—C3178.2 (3)
O2—Mn1—N2—C11112.3 (2)C12—N2—C11—C100.0 (4)
O1—Mn1—N2—C1191.3 (2)Mn1—N2—C11—C10172.1 (2)
O3—Mn1—N2—C1289.66 (18)C12—N2—C11—C14179.3 (2)
O1W—Mn1—N2—C12158.93 (16)Mn1—N2—C11—C147.2 (4)
N1—Mn1—N2—C129.73 (16)C9—C10—C11—N21.4 (4)
O2—Mn1—N2—C1260.2 (2)C9—C10—C11—C14177.9 (3)
O1—Mn1—N2—C1281.19 (17)C8—C7—C6—C50.1 (5)
Mn1—O1—N3—O5179.0 (3)C13—C5—C6—C70.9 (5)
Mn1—O1—N3—O21.4 (3)C4—C5—C6—C7178.1 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2ii0.822.232.978 (4)151
O1W—H2W1···O4iii0.821.872.677 (3)170
C6—H6A···O4iv0.932.573.353 (4)142
C9—H9A···O1v0.932.563.439 (5)157
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C4H2O4)(NO3)2(C14H12N2)2(H2O)2]
Mr800.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.034 (2), 9.1824 (16), 16.416 (2)
β (°) 113.532 (10)
V3)1663.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.42 × 0.33 × 0.20
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.723, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
8963, 3266, 2951
Rint0.013
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.134, 1.06
No. of reflections3266
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.86

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.822.2342.978 (4)151.06
O1W—H2W1···O4ii0.821.8662.677 (3)169.67
C6—H6A···O4iii0.932.5693.353 (4)142.30
C9—H9A···O1iv0.932.5643.439 (5)156.91
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds