organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(phenyl­phosphor­yl)ethane

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 7 November 2007; accepted 9 November 2007; online 21 December 2007)

The geometric parameters of the mol­ecule of the title compound, C14H16O2P2, are in the usual ranges. It is a meso compound with the two chiral P atoms having opposite configurations. The P—CH2—CH2—P chain adopts a trans conformation [torsion angle −178.59 (17)°]. The P=O bonds are almost coplanar with the adjacent phenyl ring [torsion angles = 3.8 (3) and 0.3 (3)°]. Whereas one of them is synclinal [torsion angle = −59.0 (2)°] to the central C—C bond, the other is anti­clinal [torsion angle = 56.6 (2)°] to the central C—C bond. The dihedral angle between the two phenyl rings is 5.2 (3)°. The mol­ecules are linked by weak C—H⋯O hydrogen bonds. They crystallize in rows running along the c axis.

Related literature

For related literature, see: Dornhaus et al. (2007[Dornhaus, F., Bolte, M., Lerner, H.-W. & Wagner, M. (2007). J. Organomet. Chem. 692, 2949-2955.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans, 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16O2P2

  • Mr = 278.21

  • Orthorhombic, P c a 21

  • a = 10.2700 (10) Å

  • b = 5.1994 (5) Å

  • c = 26.241 (4) Å

  • V = 1401.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 (2) K

  • 0.31 × 0.24 × 0.08 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan [MULABS (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])] Tmin = 0.912, Tmax = 0.966

  • 4658 measured reflections

  • 2482 independent reflections

  • 2157 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.00

  • 2482 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1143 Friedel pairs

  • Flack parameter: 0.06 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.99 2.43 3.159 (4) 130
C1—H1B⋯O1ii 0.99 2.45 3.436 (4) 173
C2—H2A⋯O2iii 0.99 2.40 3.386 (4) 176
C2—H2B⋯O1iv 0.99 2.41 3.146 (4) 131
C12—H12⋯O1ii 0.95 2.47 3.332 (4) 150
C26—H26⋯O2iii 0.95 2.52 3.366 (4) 148
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z]; (ii) [x-{\script{1\over 2}}, -y, z]; (iii) [x+{\script{1\over 2}}, -y+1, z]; (iv) [x-{\script{1\over 2}}, -y+1, z].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991[Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Very recently we have reported the syntheses of the diphospine PhHP—CH2—CH2—PHPh (Ph = C6H5) (Dornhaus et al., 2007). Oxidation of the diphosphine rac/meso PhHPH-CH2—CH2—PHPh with air provides facile access to the corresponding phosphine oxide rac/meso PhHPO—CH2—CH2—OPHPh. Single crystals of the pure diastereomer meso PhHPO—CH2—CH2—OPHPh have been obtained from diphospine PhHP—CH2—CH2—PHPh in air at room temperature.

The P—CH2—CH2—P chain adopts a trans conformation [torsion angle -178.59 (17)°]. The P?O bonds are almost coplanar with the adjacent phenyl ring [torsion angles 3.8 (3)° and 0.3 (3)°]. Whereas one of them is synclinal [torsion angle -59.0 (2)°] to the central C—C bond the other one is anticlinal [torsion angle 56.6 (2)°] to the central C—C bond. The dihedral angle between the two phenyl rings is 5.2 (3)°. The molecules are linked by weak C—H···O hydrogen bonds. They crystallize in rows running along the c axis.

Related literature top

For related literature, see: Dornhaus et al. (2007). [Standard reference for bond lengths?]

Experimental top

The diphospine PhHP—CH2—CH2—PHPh (0.29 g, 1.2 mmol) has been stored in air for 24 h at room temperature. Single crystals of the pure diastereomer meso PhHPO—CH2—CH2—OPHPh have been obtained in 5% yield.

Refinement top

H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C,P)] using a riding model with P—H = 1.3 Å, Caromatic—H = 0.95 Å and Cmethylene—H = 0.99 Å

Structure description top

Very recently we have reported the syntheses of the diphospine PhHP—CH2—CH2—PHPh (Ph = C6H5) (Dornhaus et al., 2007). Oxidation of the diphosphine rac/meso PhHPH-CH2—CH2—PHPh with air provides facile access to the corresponding phosphine oxide rac/meso PhHPO—CH2—CH2—OPHPh. Single crystals of the pure diastereomer meso PhHPO—CH2—CH2—OPHPh have been obtained from diphospine PhHP—CH2—CH2—PHPh in air at room temperature.

The P—CH2—CH2—P chain adopts a trans conformation [torsion angle -178.59 (17)°]. The P?O bonds are almost coplanar with the adjacent phenyl ring [torsion angles 3.8 (3)° and 0.3 (3)°]. Whereas one of them is synclinal [torsion angle -59.0 (2)°] to the central C—C bond the other one is anticlinal [torsion angle 56.6 (2)°] to the central C—C bond. The dihedral angle between the two phenyl rings is 5.2 (3)°. The molecules are linked by weak C—H···O hydrogen bonds. They crystallize in rows running along the c axis.

For related literature, see: Dornhaus et al. (2007). [Standard reference for bond lengths?]

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound.
1,2-Bis(phenylphosphoryl)ethane top
Crystal data top
C14H16O2P2F(000) = 584
Mr = 278.21Dx = 1.319 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 5153 reflections
a = 10.270 (1) Åθ = 3.9–25.8°
b = 5.1994 (5) ŵ = 0.30 mm1
c = 26.241 (4) ÅT = 173 K
V = 1401.2 (3) Å3Plate, colourless
Z = 40.31 × 0.24 × 0.08 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2482 independent reflections
Radiation source: fine-focus sealed tube2157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.6°, θmin = 4.0°
Absorption correction: multi-scan
[MULABS (Spek, 2003; Blessing, 1995)]
h = 1211
Tmin = 0.912, Tmax = 0.966k = 65
4658 measured reflectionsl = 3130
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2482 reflectionsΔρmax = 0.72 e Å3
163 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), with 1143 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (14)
Crystal data top
C14H16O2P2V = 1401.2 (3) Å3
Mr = 278.21Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.270 (1) ŵ = 0.30 mm1
b = 5.1994 (5) ÅT = 173 K
c = 26.241 (4) Å0.31 × 0.24 × 0.08 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2482 independent reflections
Absorption correction: multi-scan
[MULABS (Spek, 2003; Blessing, 1995)]
2157 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.966Rint = 0.034
4658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.72 e Å3
S = 1.00Δρmin = 0.29 e Å3
2482 reflectionsAbsolute structure: Flack (1983), with 1143 Friedel pairs
163 parametersAbsolute structure parameter: 0.06 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.75634 (7)0.09258 (15)0.55327 (3)0.01962 (18)
H10.79020.14730.55770.024*
O10.8765 (2)0.2475 (5)0.54496 (9)0.0332 (6)
C10.6354 (3)0.1150 (6)0.50342 (11)0.0184 (6)
H1A0.67250.04960.47110.022*
H1B0.55950.00640.51230.022*
C20.5901 (3)0.3960 (6)0.49600 (11)0.0185 (6)
H2A0.66550.50380.48620.022*
H2B0.55500.46290.52850.022*
P20.46596 (7)0.41704 (16)0.44712 (3)0.01884 (18)
H20.42790.65510.44420.023*
O20.3486 (2)0.2528 (5)0.45636 (9)0.0340 (6)
C110.6761 (3)0.1889 (7)0.61166 (11)0.0205 (7)
C120.5615 (3)0.0667 (8)0.62867 (12)0.0277 (7)
H120.52670.07460.61020.033*
C130.4993 (4)0.1532 (8)0.67257 (12)0.0377 (9)
H130.42280.06880.68420.045*
C140.5479 (5)0.3611 (10)0.69939 (12)0.0401 (11)
H140.50360.42130.72880.048*
C150.6626 (4)0.4834 (8)0.68326 (15)0.0404 (9)
H150.69660.62490.70190.048*
C160.7263 (4)0.3955 (8)0.63960 (12)0.0317 (8)
H160.80450.47670.62880.038*
C210.5436 (3)0.3326 (7)0.38734 (11)0.0228 (7)
C220.4890 (4)0.1358 (8)0.35768 (13)0.0348 (8)
H220.41260.04960.36890.042*
C230.5475 (5)0.0670 (9)0.31147 (15)0.0482 (11)
H230.51130.06760.29150.058*
C240.6574 (4)0.1937 (9)0.29480 (13)0.0427 (10)
H240.69600.14670.26320.051*
C250.7122 (4)0.3893 (9)0.32372 (13)0.0420 (10)
H250.78900.47310.31220.050*
C260.6548 (3)0.4630 (8)0.36958 (12)0.0310 (8)
H260.69050.60070.38880.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0143 (4)0.0230 (4)0.0216 (3)0.0010 (3)0.0016 (3)0.0057 (4)
O10.0210 (12)0.0438 (16)0.0348 (14)0.0042 (11)0.0010 (10)0.0071 (11)
C10.0150 (13)0.0190 (17)0.0210 (13)0.0030 (13)0.0019 (11)0.0008 (12)
C20.0140 (13)0.0201 (16)0.0215 (13)0.0016 (13)0.0020 (10)0.0009 (12)
P20.0140 (3)0.0233 (4)0.0192 (3)0.0013 (3)0.0012 (3)0.0027 (4)
O20.0217 (12)0.0443 (17)0.0360 (15)0.0038 (11)0.0010 (10)0.0018 (11)
C110.0195 (16)0.0225 (17)0.0194 (13)0.0002 (14)0.0045 (12)0.0033 (12)
C120.0236 (17)0.035 (2)0.0244 (15)0.0017 (16)0.0032 (12)0.0040 (14)
C130.033 (2)0.051 (3)0.0288 (17)0.0050 (19)0.0058 (14)0.0099 (15)
C140.054 (3)0.045 (3)0.0209 (17)0.015 (2)0.0010 (15)0.0014 (13)
C150.065 (3)0.033 (2)0.0230 (16)0.000 (2)0.0038 (17)0.0014 (15)
C160.042 (2)0.0276 (18)0.0253 (16)0.0032 (17)0.0053 (14)0.0039 (13)
C210.0222 (16)0.0247 (17)0.0215 (14)0.0031 (14)0.0062 (12)0.0016 (13)
C220.043 (2)0.033 (2)0.0282 (17)0.0124 (17)0.0002 (15)0.0011 (14)
C230.069 (3)0.044 (2)0.0324 (19)0.012 (2)0.0006 (18)0.0133 (19)
C240.051 (2)0.053 (3)0.0241 (16)0.006 (2)0.0063 (16)0.0064 (16)
C250.032 (2)0.066 (3)0.0276 (16)0.009 (2)0.0071 (14)0.0015 (18)
C260.0290 (18)0.043 (2)0.0211 (16)0.0067 (17)0.0003 (12)0.0024 (14)
Geometric parameters (Å, º) top
P1—O11.490 (2)C13—H130.9500
P1—C11.808 (3)C14—C151.404 (6)
P1—C111.811 (3)C14—H140.9500
P1—H11.3000C15—C161.396 (5)
C1—C21.546 (4)C15—H150.9500
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C21—C221.403 (5)
C2—P21.812 (3)C21—C261.407 (5)
C2—H2A0.9900C22—C231.400 (6)
C2—H2B0.9900C22—H220.9500
P2—O21.497 (3)C23—C241.378 (6)
P2—C211.814 (3)C23—H230.9500
P2—H21.3000C24—C251.388 (6)
C11—C161.399 (5)C24—H240.9500
C11—C121.410 (5)C25—C261.394 (5)
C12—C131.392 (5)C25—H250.9500
C12—H120.9500C26—H260.9500
C13—C141.383 (6)
O1—P1—C1115.39 (14)C14—C13—C12120.5 (4)
O1—P1—C11110.57 (16)C14—C13—H13119.7
C1—P1—C11106.35 (14)C12—C13—H13119.7
O1—P1—H1108.1C13—C14—C15120.2 (3)
C1—P1—H1108.1C13—C14—H14119.9
C11—P1—H1108.1C15—C14—H14119.9
C2—C1—P1111.03 (18)C16—C15—C14119.5 (4)
C2—C1—H1A109.4C16—C15—H15120.2
P1—C1—H1A109.4C14—C15—H15120.2
C2—C1—H1B109.4C15—C16—C11120.5 (4)
P1—C1—H1B109.4C15—C16—H16119.7
H1A—C1—H1B108.0C11—C16—H16119.7
C1—C2—P2110.98 (18)C22—C21—C26119.5 (3)
C1—C2—H2A109.4C22—C21—P2118.7 (3)
P2—C2—H2A109.4C26—C21—P2121.8 (3)
C1—C2—H2B109.4C23—C22—C21119.7 (4)
P2—C2—H2B109.4C23—C22—H22120.1
H2A—C2—H2B108.0C21—C22—H22120.1
O2—P2—C2114.67 (15)C24—C23—C22120.3 (4)
O2—P2—C21110.86 (16)C24—C23—H23119.9
C2—P2—C21106.76 (15)C22—C23—H23119.9
O2—P2—H2108.1C23—C24—C25120.6 (4)
C2—P2—H2108.1C23—C24—H24119.7
C21—P2—H2108.1C25—C24—H24119.7
C16—C11—C12119.2 (3)C24—C25—C26120.1 (4)
C16—C11—P1119.2 (3)C24—C25—H25120.0
C12—C11—P1121.6 (3)C26—C25—H25120.0
C13—C12—C11120.0 (4)C25—C26—C21119.8 (4)
C13—C12—H12120.0C25—C26—H26120.1
C11—C12—H12120.0C21—C26—H26120.1
O1—P1—C1—C259.0 (2)C12—C11—C16—C151.3 (5)
C11—P1—C1—C264.0 (2)P1—C11—C16—C15176.5 (3)
P1—C1—C2—P2178.59 (17)O2—P2—C21—C220.3 (3)
C1—C2—P2—O256.6 (2)C2—P2—C21—C22125.8 (3)
C1—C2—P2—C2166.6 (2)O2—P2—C21—C26178.8 (3)
O1—P1—C11—C163.8 (3)C2—P2—C21—C2655.6 (3)
C1—P1—C11—C16122.2 (3)C26—C21—C22—C231.6 (6)
O1—P1—C11—C12178.5 (3)P2—C21—C22—C23179.8 (3)
C1—P1—C11—C1255.5 (3)C21—C22—C23—C240.7 (6)
C16—C11—C12—C130.5 (5)C22—C23—C24—C250.6 (7)
P1—C11—C12—C13177.2 (3)C23—C24—C25—C261.3 (7)
C11—C12—C13—C140.9 (5)C24—C25—C26—C212.2 (6)
C12—C13—C14—C151.5 (6)C22—C21—C26—C252.3 (5)
C13—C14—C15—C160.7 (6)P2—C21—C26—C25179.2 (3)
C14—C15—C16—C110.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.992.433.159 (4)130
C1—H1B···O1ii0.992.453.436 (4)173
C2—H2A···O2iii0.992.403.386 (4)176
C2—H2B···O1iv0.992.413.146 (4)131
C12—H12···O1ii0.952.473.332 (4)150
C26—H26···O2iii0.952.523.366 (4)148
Symmetry codes: (i) x+1/2, y, z; (ii) x1/2, y, z; (iii) x+1/2, y+1, z; (iv) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16O2P2
Mr278.21
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)10.270 (1), 5.1994 (5), 26.241 (4)
V3)1401.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.31 × 0.24 × 0.08
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
[MULABS (Spek, 2003; Blessing, 1995)]
Tmin, Tmax0.912, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
4658, 2482, 2157
Rint0.034
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.00
No. of reflections2482
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.29
Absolute structureFlack (1983), with 1143 Friedel pairs
Absolute structure parameter0.06 (14)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 1990), XP in SHELXTL-Plus (Sheldrick, 1991), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.992.433.159 (4)130.3
C1—H1B···O1ii0.992.453.436 (4)173.2
C2—H2A···O2iii0.992.403.386 (4)175.5
C2—H2B···O1iv0.992.413.146 (4)130.6
C12—H12···O1ii0.952.473.332 (4)150.3
C26—H26···O2iii0.952.523.366 (4)148.2
Symmetry codes: (i) x+1/2, y, z; (ii) x1/2, y, z; (iii) x+1/2, y+1, z; (iv) x1/2, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans, 2, pp. S1–19.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDornhaus, F., Bolte, M., Lerner, H.-W. & Wagner, M. (2007). J. Organomet. Chem. 692, 2949–2955.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds