Download citation
Download citation
link to html
In the crystal structure of the title compound, [Ni(C2H4NO)(NO3)(C12H8N2)]n, the NiII atoms are linked by acetamidate ligands to form a chain. Each NiII atom is five-coordinated by two N atoms of a 1,10-phenanthroline ligand, one nitrate O atom, and one N and one O atom of acetamide within a bipyramidal coordination geometry. In the crystal structure, the chains are linked by hydrogen bonds into a polymeric ribbon structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056504/at2467sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056504/at2467Isup2.hkl
Contains datablock I

CCDC reference: 1296844

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.123
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT362_ALERT_2_B Short C(sp3)-C(sp2) Bond C13 - C14 ... 1.22 Ang. PLAT411_ALERT_2_B Short Inter H...H Contact H5 .. H14B .. 2.00 Ang.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, are one of the most important classes of biological ligands, the coordinations of metal-aromatic polycyclic compounds are of critical importance in biological systems, organic materials and coordination chemistry (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). As a bidentate flexible ligand, acyl groups compounds are also a good ligand with excellent coordination capability to generate mono-, bi- or trinuclear complexes, which are commonly used as precursors for the formation of supramolecular architectures (Harrop et al., 2003; Qi, Ma et al., 2003; Qi, Qiu et al., 2003; Rauko et al., 2001; Foster et al., 1999; Zhou et al., 1999). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The title compound, [Ni2(NO3)2(C2H4NO)2(C12H8N2)2]n, which are bridged by two bidentate acetamido groups with an inversion centre between the two NiII ions. Each Ni atom is five-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand, one O atom of NO3- and one N and one O atoms of acetamido ligands (Table 1). The Ni—O bond lengths are in the range 1.933 (2) to 2.329 (2) Å. The Ni—N bond lengths are in the range 1.971 (2) to 2.010 (2) Å.

In the crystal structure, no classic C—H···O hydrogen bonds (Fig. 2 and Table 2) seem to be effective in the stabilization of the structure, resulting in the formation of a polymeric ribbon structure.

Related literature top

For general background, see: Desiraju (1995, 1997); Braga et al. (1998); Wu et al. (2003); Pan & Xu (2004); Liu et al. (2004); Li et al. (2005); Harrop et al. (2003); Qi, Ma et al. (2003); Qi, Qiu et al. (2003); Rauko et al. (2001); Foster et al. (1999); Zhou et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Nickel (II) nitrate hexahydrate (290.8 mg, 1 mmol), phen (180.2 mg, 1 mmol), acetamide (59.1 mg, 1 mmol) and distilled water (8 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small green crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

The H atoms were positioned geometrically, with N—H = 0.86 Å (for NH), C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.2 for aromatic and imino H atoms, and x = 1.5 for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): -x + 3/2, y + 1/2, -z + 1/2].
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
catena-Poly[[(nitrato-κO)(1,10-phenanthroline- κ2N,N')nickel(II)]-µ-acetamido-κ2O:N] top
Crystal data top
[Ni(C2H4NO)(NO3)(C12H8N2)]F(000) = 736
Mr = 358.99Dx = 1.799 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5602 reflections
a = 8.7113 (11) Åθ = 2.2–27.5°
b = 9.2019 (14) ŵ = 1.49 mm1
c = 16.9102 (16) ÅT = 273 K
β = 102.104 (6)°Prism, green
V = 1325.4 (3) Å30.40 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2653 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.584, Tmax = 0.751k = 1111
8403 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0915P)2 + 0.5483P]
where P = (Fo2 + 2Fc2)/3
2653 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Ni(C2H4NO)(NO3)(C12H8N2)]V = 1325.4 (3) Å3
Mr = 358.99Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7113 (11) ŵ = 1.49 mm1
b = 9.2019 (14) ÅT = 273 K
c = 16.9102 (16) Å0.40 × 0.25 × 0.20 mm
β = 102.104 (6)°
Data collection top
Bruker APEXII area-detector
diffractometer
2653 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2273 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.751Rint = 0.017
8403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 0.72 e Å3
2653 reflectionsΔρmin = 0.61 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.66504 (4)0.92789 (4)0.803171 (18)0.03382 (16)
O10.5482 (3)1.0052 (3)0.70208 (12)0.0503 (5)
O20.3465 (3)0.9000 (4)0.72889 (18)0.0803 (9)
O30.3287 (3)1.0276 (3)0.62167 (16)0.0662 (7)
O40.6208 (2)0.5051 (2)0.74830 (14)0.0499 (5)
N10.6079 (3)1.0940 (3)0.86863 (15)0.0383 (5)
N20.7950 (3)0.8670 (3)0.90780 (13)0.0365 (5)
N30.6878 (3)0.7348 (2)0.75215 (12)0.0306 (4)
H3A0.74180.72390.71540.037*
N40.4024 (3)0.9773 (3)0.68400 (15)0.0432 (5)
C10.5205 (4)1.2104 (3)0.8465 (2)0.0473 (7)
H10.48191.22620.79160.057*
C20.4830 (4)1.3112 (4)0.9018 (2)0.0507 (7)
H20.42241.39260.88390.061*
C30.5365 (4)1.2877 (4)0.9809 (2)0.0507 (7)
H30.51011.35111.01880.061*
C40.6330 (3)1.1665 (3)1.00661 (18)0.0412 (6)
C50.6981 (4)1.1344 (4)1.08803 (18)0.0473 (7)
H50.67371.19261.12860.057*
C60.7960 (4)1.0193 (4)1.10811 (18)0.0471 (7)
H60.83821.00121.16240.057*
C70.8363 (4)0.9252 (3)1.04826 (18)0.0392 (6)
C80.9426 (4)0.8077 (3)1.06353 (18)0.0458 (7)
H80.99260.78611.11640.055*
C90.9724 (4)0.7260 (4)1.00158 (19)0.0475 (7)
H91.04370.64961.01160.057*
C100.8958 (4)0.7578 (3)0.92384 (19)0.0440 (7)
H100.91520.70110.88150.053*
C110.7672 (3)0.9512 (3)0.96844 (17)0.0342 (5)
C120.6655 (3)1.0728 (3)0.94748 (17)0.0345 (6)
C130.6164 (3)0.6283 (3)0.77801 (15)0.0318 (5)
C140.5451 (3)0.6523 (3)0.83137 (18)0.0402 (6)
H14A0.45090.59500.82230.060*
H14B0.51840.75350.83110.060*
H14C0.60990.62720.88280.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0402 (2)0.0328 (2)0.0268 (2)0.00247 (13)0.00345 (15)0.00109 (12)
O10.0468 (11)0.0589 (15)0.0406 (11)0.0053 (10)0.0012 (9)0.0129 (10)
O20.0612 (16)0.123 (3)0.0568 (16)0.0217 (16)0.0122 (13)0.0270 (17)
O30.0586 (14)0.0730 (16)0.0565 (15)0.0050 (13)0.0119 (12)0.0174 (14)
O40.0491 (12)0.0397 (12)0.0611 (13)0.0040 (9)0.0118 (10)0.0149 (10)
N10.0407 (12)0.0358 (12)0.0381 (12)0.0003 (10)0.0076 (10)0.0046 (10)
N20.0416 (11)0.0331 (11)0.0338 (11)0.0020 (10)0.0057 (9)0.0012 (9)
N30.0389 (10)0.0301 (10)0.0241 (9)0.0035 (9)0.0094 (8)0.0030 (8)
N40.0445 (13)0.0420 (13)0.0404 (12)0.0002 (11)0.0031 (11)0.0008 (11)
C10.0482 (15)0.0421 (16)0.0492 (16)0.0060 (13)0.0048 (13)0.0042 (14)
C20.0505 (16)0.0422 (16)0.0593 (19)0.0120 (13)0.0117 (14)0.0027 (14)
C30.0517 (17)0.0417 (16)0.0623 (19)0.0074 (13)0.0206 (15)0.0058 (14)
C40.0421 (14)0.0404 (14)0.0440 (14)0.0034 (12)0.0157 (12)0.0036 (12)
C50.0546 (17)0.0525 (18)0.0384 (14)0.0026 (15)0.0182 (13)0.0088 (13)
C60.0522 (16)0.0567 (18)0.0330 (14)0.0000 (15)0.0103 (13)0.0016 (13)
C70.0439 (14)0.0406 (15)0.0330 (13)0.0042 (11)0.0079 (12)0.0025 (11)
C80.0513 (16)0.0444 (16)0.0385 (14)0.0007 (13)0.0017 (12)0.0063 (13)
C90.0517 (16)0.0387 (15)0.0479 (16)0.0088 (13)0.0008 (13)0.0038 (13)
C100.0506 (15)0.0361 (14)0.0433 (15)0.0063 (12)0.0052 (13)0.0045 (12)
C110.0375 (13)0.0319 (13)0.0334 (13)0.0029 (10)0.0076 (11)0.0008 (10)
C120.0359 (13)0.0323 (13)0.0363 (13)0.0031 (10)0.0095 (11)0.0016 (10)
C130.0319 (11)0.0303 (12)0.0312 (12)0.0021 (10)0.0020 (10)0.0028 (10)
C140.0523 (15)0.0325 (13)0.0456 (14)0.0044 (12)0.0328 (13)0.0053 (11)
Geometric parameters (Å, º) top
Ni1—O11.933 (2)C3—C41.409 (5)
Ni1—O4i2.329 (2)C3—H30.9300
Ni1—N12.010 (2)C4—C121.394 (4)
Ni1—N21.971 (2)C4—C51.406 (4)
Ni1—N32.003 (2)C5—C61.357 (5)
O1—N41.269 (3)C5—H50.9300
O2—N41.214 (4)C6—C71.431 (4)
O3—N41.206 (4)C6—H60.9300
O4—C131.244 (3)C7—C111.378 (4)
O4—Ni1ii2.329 (2)C7—C81.412 (4)
N1—C11.322 (4)C8—C91.358 (5)
N1—C121.337 (4)C8—H80.9300
N2—C101.325 (4)C9—C101.375 (4)
N2—C111.346 (4)C9—H90.9300
N3—C131.286 (4)C10—H100.9300
N3—H3A0.8600C11—C121.426 (4)
C1—C21.404 (5)C13—C141.218 (4)
C1—H10.9300C14—H14A0.9600
C2—C31.339 (5)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
O1—Ni1—O4i82.63 (9)C5—C4—C3124.1 (3)
O1—Ni1—N193.54 (10)C6—C5—C4120.8 (3)
O1—Ni1—N2174.49 (10)C6—C5—H5119.6
O1—Ni1—N391.54 (10)C4—C5—H5119.6
O4—Ni1—N1i138.78 (4)C5—C6—C7122.0 (3)
O4—Ni1—N2i125.85 (4)C5—C6—H6119.0
O4—Ni1—N3i141.92 (5)C7—C6—H6119.0
N1—Ni1—N283.31 (10)C11—C7—C8116.5 (3)
N1—Ni1—N3165.94 (10)C11—C7—C6117.8 (3)
N2—Ni1—N392.56 (9)C8—C7—C6125.7 (3)
N4—O1—Ni1116.96 (18)C9—C8—C7120.5 (3)
C13—O4—Ni1ii121.59 (18)C9—C8—H8119.8
C1—N1—C12118.3 (3)C7—C8—H8119.8
C1—N1—Ni1130.9 (2)C8—C9—C10119.1 (3)
C12—N1—Ni1110.71 (18)C8—C9—H9120.4
C10—N2—C11119.8 (2)C10—C9—H9120.4
C10—N2—Ni1129.1 (2)N2—C10—C9121.7 (3)
C11—N2—Ni1111.07 (18)N2—C10—H10119.2
C13—N3—Ni1115.54 (17)C9—C10—H10119.2
C13—N3—H3A122.2N2—C11—C7122.3 (3)
Ni1—N3—H3A122.2N2—C11—C12117.6 (2)
O3—N4—O2124.1 (3)C7—C11—C12120.0 (3)
O3—N4—O1117.1 (3)N1—C12—C4122.4 (3)
O2—N4—O1118.7 (3)N1—C12—C11116.5 (2)
N1—C1—C2123.1 (3)C4—C12—C11121.1 (3)
N1—C1—H1118.4C14—C13—O4121.9 (3)
C2—C1—H1118.4C14—C13—N3118.1 (3)
C3—C2—C1118.6 (3)O4—C13—N3120.0 (2)
C3—C2—H2120.7C13—C14—H14A109.5
C1—C2—H2120.7C13—C14—H14B109.5
C2—C3—C4119.7 (3)H14A—C14—H14B109.5
C2—C3—H3120.1C13—C14—H14C109.5
C4—C3—H3120.1H14A—C14—H14C109.5
C12—C4—C5118.1 (3)H14B—C14—H14C109.5
C12—C4—C3117.8 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3iii0.932.503.323 (4)148
C5—H5···O2iv0.932.603.215 (4)125
Symmetry codes: (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C2H4NO)(NO3)(C12H8N2)]
Mr358.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.7113 (11), 9.2019 (14), 16.9102 (16)
β (°) 102.104 (6)
V3)1325.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.584, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
8403, 2653, 2273
Rint0.017
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.123, 1.01
No. of reflections2653
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.61

Computer programs: APEX2 (Bruker, 2005), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Selected geometric parameters (Å, º) top
Ni1—O11.933 (2)Ni1—N21.971 (2)
Ni1—O4i2.329 (2)Ni1—N32.003 (2)
Ni1—N12.010 (2)
O1—Ni1—O4i82.63 (9)O4—Ni1—N2i125.85 (4)
O1—Ni1—N193.54 (10)O4—Ni1—N3i141.92 (5)
O1—Ni1—N2174.49 (10)N1—Ni1—N283.31 (10)
O1—Ni1—N391.54 (10)N1—Ni1—N3165.94 (10)
O4—Ni1—N1i138.78 (4)N2—Ni1—N392.56 (9)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3ii0.932.503.323 (4)148
C5—H5···O2iii0.932.603.215 (4)125
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds