Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu(C5H3N6)2(H2O)2], is isostructural with the manganese(II) analogue, but different from the two-dimensional structures of the zinc(II), iron(II), cobalt(II) and nickel(II) complexes with the same 5-(pyrimidin-2-yl)tetra­zolate ligand. Each of the two symmetry-independent but structurally similar mononuclear mol­ecules in the crystallographic asymmetric unit occupies a special position with the CuII atom on an inversion centre. Both CuII atoms have a highly distorted octa­hedral coordination geometry formed by two trans water mol­ecules and two chelating ligands. Inter­molecular O—H...N hydrogen bonds are present, which lead to the formation of a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049197/at2417sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049197/at2417Isup2.hkl
Contains datablock I

CCDC reference: 667152

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.105
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.66 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 36.00 A   3 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.842(10) ...... 3.00 su-Ra O1W -H1WA 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.847(10) ...... 3.00 su-Ra O2W -H2WA 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra O1W -H1# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Ra O2W -H3# 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 2.11(3), Rep 2.110(10) ...... 3.00 su-Ra H1# -N4 1.555 1.455 PLAT736_ALERT_1_C H...A Calc 2.03(3), Rep 2.030(10) ...... 3.00 su-Ra H2# -N10 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 2.00(3), Rep 2.000(10) ...... 3.00 su-Ra H3# -N9 1.555 1.655
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.658 Tmax scaled 0.658 Tmin scaled 0.629 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.24 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.26 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 10 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The crystal structures of NaII, MnII, FeII, CoII, NiII and Zn(II) complexes with 5-(pyrimidin-2-yl)tetrazolate group have been reported recently (Liu & Fan, 2007; Rodríguez et al., 2005, 2007; Rodríguez & Colacio (2006); Zhang et al., 2007). Such complexes were obtained by either the direction reaction of the ligand, 2-(1H-tetrazol-5-yl)pyrimidine or the in situ reaction from pyrimidine-2-carbonitrile in the presence of NaN3 with metal salts under hydrothermal conditions. Except of the MnII complex, which has a mononuclear structure being similar to the title compound, all of other complexes have an extended structure, tow- or three-dimensional. And, the ligands coordinate to metal atoms adopting several modes.

The title complex, Cu(C5H3N6)2(H2O)2 (I) performs a mono-nuclear structure, being similar to that of Mn(II) analog. However, in the crystallographic asymmetric unit, there exist two symmetry-independent but structural similar mononuclear molecules, both of which occupies a special position with CuII atoms being on an inversion center (Fig. 1). Two CuII centers have a highly distorted octahedral coordination geometry formed by two trans water molecules and two chelating ligand moieties. Table 1 lists the related bond parameters. Furthermore, such molecules are assembled by the intermolecular O—H···N hydrogen bonds to form a two-dimensional network (Fig. 2 and Table 2).

Related literature top

For related literature, see: Liu & Fan (2007); Rodríguez et al. (2005, 2007); Rodríguez & Colacio (2006); Zhang et al. (2007).

Experimental top

The title compound was synthesized as crystals by a hydrothermal method, with the ligand, 5-(pyrimidin-2-yl)tetrazolato formed during the reaction procedure from the pyrimidine-2-carbonitrile and NaN3: A mixture of CuCl2.2H2O (17 mg, 0.1 mmol), NaN3 (26 mg, 0.4 mmol) and pyrimidine-2-carbonitrile (21 mg, 0.2 mmol) in water (10 ml) was placed in a Teflon-lined stainless-steel Parr bomb that was heated at 443 K for 48 h. Blue crystals of (I) were collected after the bomb was allowed to cool to room temperature in the period of 24 h. Yield, 20% based on CuII. Caution: Azide and tetrazole derivatives are potentially explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement top

H atoms of organic ligands were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). The H atoms of water molecules were located in Fourier difference map and refined with bond restraints O—H = 0.85 (1) Å, and with Uiso(H) = 1.5 Ueq (O).

Structure description top

The crystal structures of NaII, MnII, FeII, CoII, NiII and Zn(II) complexes with 5-(pyrimidin-2-yl)tetrazolate group have been reported recently (Liu & Fan, 2007; Rodríguez et al., 2005, 2007; Rodríguez & Colacio (2006); Zhang et al., 2007). Such complexes were obtained by either the direction reaction of the ligand, 2-(1H-tetrazol-5-yl)pyrimidine or the in situ reaction from pyrimidine-2-carbonitrile in the presence of NaN3 with metal salts under hydrothermal conditions. Except of the MnII complex, which has a mononuclear structure being similar to the title compound, all of other complexes have an extended structure, tow- or three-dimensional. And, the ligands coordinate to metal atoms adopting several modes.

The title complex, Cu(C5H3N6)2(H2O)2 (I) performs a mono-nuclear structure, being similar to that of Mn(II) analog. However, in the crystallographic asymmetric unit, there exist two symmetry-independent but structural similar mononuclear molecules, both of which occupies a special position with CuII atoms being on an inversion center (Fig. 1). Two CuII centers have a highly distorted octahedral coordination geometry formed by two trans water molecules and two chelating ligand moieties. Table 1 lists the related bond parameters. Furthermore, such molecules are assembled by the intermolecular O—H···N hydrogen bonds to form a two-dimensional network (Fig. 2 and Table 2).

For related literature, see: Liu & Fan (2007); Rodríguez et al. (2005, 2007); Rodríguez & Colacio (2006); Zhang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (30% probability) of (I). [Symmetry codes: (A) -x, -y, 1 - z; (B) 1 - x, -y, -z]
[Figure 2] Fig. 2. Two-dimensional H-bonded network in (I).
Diaquabis[5-(pyrimidin-2-yl-κN)tetrazolato-κN1]copper(II) top
Crystal data top
[Cu(C5H3N6)2(H2O)2]Z = 2
Mr = 393.84F(000) = 398
Triclinic, P1Dx = 1.747 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.329 (2) ÅCell parameters from 5023 reflections
b = 8.107 (2) Åθ = 3.1–27.5°
c = 12.926 (3) ŵ = 1.50 mm1
α = 86.68 (3)°T = 293 K
β = 89.84 (3)°Block, blue
γ = 77.49 (3)°0.40 × 0.30 × 0.28 mm
V = 748.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3433 independent reflections
Radiation source: fine-focus sealed tube2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.956, Tmax = 1.000k = 1010
7532 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1285P]
where P = (Fo2 + 2Fc2)/3
3433 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.66 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C5H3N6)2(H2O)2]γ = 77.49 (3)°
Mr = 393.84V = 748.5 (3) Å3
Triclinic, P1Z = 2
a = 7.329 (2) ÅMo Kα radiation
b = 8.107 (2) ŵ = 1.50 mm1
c = 12.926 (3) ÅT = 293 K
α = 86.68 (3)°0.40 × 0.30 × 0.28 mm
β = 89.84 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3433 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2314 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 1.000Rint = 0.043
7532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.66 e Å3
3433 reflectionsΔρmin = 0.39 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.50000.02640 (15)
Cu20.50000.00000.00000.02917 (16)
N10.2252 (3)0.0382 (3)0.41247 (18)0.0262 (5)
N20.3163 (3)0.1505 (3)0.3476 (2)0.0314 (6)
N30.4635 (3)0.0956 (4)0.3140 (2)0.0341 (6)
N40.4700 (3)0.0523 (3)0.35479 (19)0.0305 (6)
N50.1078 (3)0.2025 (3)0.53878 (18)0.0253 (5)
N60.3470 (3)0.3472 (3)0.4879 (2)0.0341 (6)
N70.2673 (3)0.0184 (3)0.07146 (19)0.0314 (6)
N80.1525 (4)0.1263 (4)0.0808 (2)0.0406 (7)
N90.0165 (4)0.0616 (4)0.1429 (2)0.0442 (8)
N100.0406 (3)0.0868 (4)0.1760 (2)0.0389 (7)
N110.4647 (3)0.2093 (3)0.08732 (19)0.0319 (6)
N120.2438 (4)0.3698 (4)0.1982 (2)0.0470 (8)
C10.3220 (4)0.0848 (4)0.4138 (2)0.0253 (6)
C20.2579 (4)0.2218 (4)0.4829 (2)0.0252 (6)
C30.2810 (4)0.4591 (4)0.5590 (3)0.0392 (8)
H3A0.33800.55000.56530.047*
C40.1354 (4)0.4464 (4)0.6222 (3)0.0367 (8)
H4A0.09590.52400.67220.044*
C50.0488 (4)0.3144 (4)0.6093 (2)0.0324 (7)
H5A0.05260.30340.65050.039*
C60.1972 (4)0.1096 (4)0.1310 (2)0.0311 (7)
C70.3035 (4)0.2396 (4)0.1399 (2)0.0327 (7)
C80.3586 (6)0.4771 (5)0.2042 (3)0.0583 (11)
H8A0.32250.57000.24430.070*
C90.5271 (6)0.4569 (5)0.1540 (3)0.0535 (10)
H9A0.60440.53300.15950.064*
C100.5751 (5)0.3182 (4)0.0952 (3)0.0402 (8)
H10A0.68800.30020.06010.048*
O1W0.1759 (3)0.1664 (3)0.35881 (17)0.0339 (5)
H1WA0.279 (3)0.139 (5)0.349 (3)0.051*
H1WB0.116 (4)0.150 (5)0.3033 (16)0.051*
O2W0.6811 (3)0.1811 (3)0.13454 (17)0.0390 (6)
H2WA0.780 (3)0.146 (5)0.145 (3)0.059*
H2WB0.631 (5)0.172 (5)0.1934 (15)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0222 (2)0.0284 (3)0.0324 (3)0.0114 (2)0.0131 (2)0.0119 (2)
Cu20.0255 (3)0.0347 (3)0.0317 (3)0.0132 (2)0.0132 (2)0.0133 (2)
N10.0231 (11)0.0306 (14)0.0267 (12)0.0076 (10)0.0067 (10)0.0088 (11)
N20.0269 (12)0.0342 (15)0.0335 (14)0.0056 (11)0.0080 (11)0.0093 (12)
N30.0247 (12)0.0449 (17)0.0318 (14)0.0045 (11)0.0080 (11)0.0075 (13)
N40.0250 (12)0.0383 (16)0.0303 (14)0.0109 (11)0.0072 (10)0.0029 (12)
N50.0229 (11)0.0243 (13)0.0299 (13)0.0075 (10)0.0058 (10)0.0029 (11)
N60.0310 (13)0.0355 (15)0.0400 (15)0.0161 (11)0.0054 (11)0.0043 (13)
N70.0255 (12)0.0422 (16)0.0277 (13)0.0093 (11)0.0082 (11)0.0059 (12)
N80.0333 (14)0.055 (2)0.0373 (16)0.0170 (13)0.0068 (12)0.0088 (14)
N90.0272 (13)0.071 (2)0.0380 (16)0.0179 (14)0.0090 (12)0.0018 (16)
N100.0289 (13)0.055 (2)0.0331 (15)0.0086 (13)0.0107 (11)0.0049 (14)
N110.0317 (13)0.0349 (15)0.0307 (14)0.0089 (11)0.0065 (11)0.0082 (12)
N120.0540 (18)0.0377 (18)0.0479 (18)0.0039 (14)0.0142 (15)0.0146 (15)
C10.0216 (13)0.0310 (16)0.0246 (14)0.0092 (12)0.0035 (11)0.0003 (12)
C20.0207 (12)0.0277 (15)0.0287 (15)0.0086 (11)0.0021 (11)0.0006 (12)
C30.0395 (17)0.0319 (18)0.052 (2)0.0191 (14)0.0014 (16)0.0077 (16)
C40.0395 (17)0.0320 (18)0.0411 (19)0.0107 (14)0.0060 (15)0.0124 (15)
C50.0320 (15)0.0313 (17)0.0364 (17)0.0097 (13)0.0092 (13)0.0126 (15)
C60.0247 (14)0.0409 (19)0.0256 (15)0.0027 (13)0.0055 (12)0.0003 (14)
C70.0345 (16)0.0343 (18)0.0265 (15)0.0013 (13)0.0031 (13)0.0022 (14)
C80.077 (3)0.038 (2)0.058 (3)0.006 (2)0.014 (2)0.022 (2)
C90.069 (3)0.042 (2)0.056 (2)0.0211 (19)0.006 (2)0.0161 (19)
C100.0427 (18)0.039 (2)0.0428 (19)0.0169 (16)0.0047 (15)0.0087 (16)
O1W0.0297 (11)0.0397 (13)0.0347 (13)0.0116 (10)0.0073 (10)0.0071 (11)
O2W0.0337 (12)0.0525 (15)0.0354 (13)0.0177 (11)0.0086 (10)0.0097 (12)
Geometric parameters (Å, º) top
Cu1—N11.977 (2)N8—N91.316 (4)
Cu1—N52.057 (2)N9—N101.347 (4)
Cu1—O1W2.406 (2)N10—C61.328 (4)
Cu2—N71.967 (2)N11—C101.328 (4)
Cu2—N112.062 (2)N11—C71.345 (4)
Cu2—O2W2.411 (3)N12—C71.329 (4)
Cu1—N1i1.977 (2)N12—C81.340 (5)
Cu1—N5i2.057 (2)C1—C21.463 (4)
Cu1—O1Wi2.406 (2)C3—C41.360 (4)
Cu2—N7ii1.967 (2)C3—H3A0.9300
Cu2—N11ii2.062 (2)C4—C51.375 (4)
Cu2—O2Wii2.411 (3)C4—H4A0.9300
N1—N21.342 (3)C5—H5A0.9300
N1—C11.344 (4)C6—C71.449 (4)
N2—N31.317 (3)C8—C91.376 (5)
N3—N41.348 (3)C8—H8A0.9300
N4—C11.313 (3)C9—C101.375 (4)
N5—C51.328 (3)C9—H9A0.9300
N5—C21.346 (3)C10—H10A0.9300
N6—C21.326 (4)O1W—H1WA0.842 (10)
N6—C31.343 (4)O1W—H1WB0.841 (10)
N7—N81.339 (4)O2W—H2WA0.847 (10)
N7—C61.339 (4)O2W—H2WB0.845 (10)
N1—Cu1—N1i180.0N9—N8—N7107.5 (3)
N1—Cu1—N5i99.14 (9)N8—N9—N10110.7 (3)
N1—Cu1—N580.86 (9)C6—N10—N9104.5 (3)
N1—Cu1—O1W89.66 (9)C10—N11—C7117.2 (3)
N1i—Cu1—O1W90.34 (9)C10—N11—Cu2129.0 (2)
N5i—Cu1—N5180.00 (6)C7—N11—Cu2113.8 (2)
N5i—Cu1—O1W89.00 (9)C7—N12—C8115.4 (3)
N5—Cu1—O1W91.00 (9)N4—C1—N1111.4 (3)
O1Wi—Cu1—O1W180.00 (7)N4—C1—C2130.8 (3)
N1i—Cu1—N5i80.86 (9)N1—C1—C2117.7 (2)
N1i—Cu1—N599.14 (9)N6—C2—N5126.1 (3)
N1—Cu1—O1Wi90.34 (9)N6—C2—C1120.7 (3)
N1i—Cu1—O1Wi89.66 (9)N5—C2—C1113.1 (2)
N5i—Cu1—O1Wi91.00 (9)N6—C3—C4123.5 (3)
N5—Cu1—O1Wi89.00 (9)N6—C3—H3A118.3
N7—Cu2—N7ii180.0 (2)C4—C3—H3A118.3
N7—Cu2—N1180.25 (10)C3—C4—C5117.4 (3)
N7ii—Cu2—N1199.75 (10)C3—C4—H4A121.3
N7—Cu2—O2Wii89.55 (9)C5—C4—H4A121.3
N7—Cu2—O2W90.45 (9)N5—C5—C4121.0 (3)
N11—Cu2—O2W92.58 (9)N5—C5—H5A119.5
N11—Cu2—O2Wii87.42 (9)C4—C5—H5A119.5
N11—Cu2—N11ii180.00 (12)N10—C6—N7110.8 (3)
O2Wii—Cu2—O2W180.00 (19)N10—C6—C7131.7 (3)
N7—Cu2—N11ii99.75 (10)N7—C6—C7117.4 (3)
N7ii—Cu2—N11ii80.25 (10)N12—C7—N11125.8 (3)
N7ii—Cu2—O2Wii90.45 (9)N12—C7—C6121.0 (3)
N11ii—Cu2—O2Wii92.58 (9)N11—C7—C6113.2 (3)
N7ii—Cu2—O2W89.55 (9)N12—C8—C9123.4 (3)
N11ii—Cu2—O2W87.42 (9)N12—C8—H8A118.3
N2—N1—C1105.9 (2)C9—C8—H8A118.3
N2—N1—Cu1140.0 (2)C10—C9—C8116.5 (3)
C1—N1—Cu1114.09 (18)C10—C9—H9A121.7
N3—N2—N1107.4 (2)C8—C9—H9A121.7
N2—N3—N4110.7 (2)N11—C10—C9121.8 (3)
C1—N4—N3104.6 (2)N11—C10—H10A119.1
C5—N5—C2117.2 (2)C9—C10—H10A119.1
C5—N5—Cu1129.0 (2)Cu1—O1W—H1WA112 (3)
C2—N5—Cu1113.81 (18)Cu1—O1W—H1WB110 (3)
C2—N6—C3114.8 (3)H1WA—O1W—H1WB106 (3)
N8—N7—C6106.5 (2)Cu2—O2W—H2WA109 (3)
N8—N7—Cu2138.6 (2)Cu2—O2W—H2WB113 (3)
C6—N7—Cu2114.9 (2)H2WA—O2W—H2WB102 (4)
N5i—Cu1—N1—N23.7 (3)N2—N1—C1—N41.3 (3)
N5—Cu1—N1—N2176.3 (3)Cu1—N1—C1—N4179.71 (19)
O1Wi—Cu1—N1—N287.4 (3)N2—N1—C1—C2177.1 (2)
O1W—Cu1—N1—N292.6 (3)Cu1—N1—C1—C23.9 (3)
N5i—Cu1—N1—C1174.8 (2)C3—N6—C2—N52.6 (5)
N5—Cu1—N1—C15.2 (2)C3—N6—C2—C1176.1 (3)
O1Wi—Cu1—N1—C194.1 (2)C5—N5—C2—N63.7 (5)
O1W—Cu1—N1—C185.9 (2)Cu1—N5—C2—N6175.8 (2)
C1—N1—N2—N31.1 (3)C5—N5—C2—C1175.1 (3)
Cu1—N1—N2—N3179.7 (2)Cu1—N5—C2—C15.5 (3)
N1—N2—N3—N40.6 (3)N4—C1—C2—N65.2 (5)
N2—N3—N4—C10.1 (3)N1—C1—C2—N6179.9 (3)
N1i—Cu1—N5—C55.3 (3)N4—C1—C2—N5173.7 (3)
O1Wi—Cu1—N5—C584.2 (3)N1—C1—C2—N51.2 (4)
O1W—Cu1—N5—C595.8 (3)C2—N6—C3—C40.5 (5)
N1—Cu1—N5—C26.0 (2)N6—C3—C4—C52.2 (5)
N1i—Cu1—N5—C2174.0 (2)C2—N5—C5—C41.6 (4)
O1Wi—Cu1—N5—C296.5 (2)Cu1—N5—C5—C4177.7 (2)
O1W—Cu1—N5—C283.5 (2)C3—C4—C5—N51.1 (5)
N11—Cu2—N7—N8174.2 (3)N9—N10—C6—N70.6 (4)
N11ii—Cu2—N7—N85.8 (3)N9—N10—C6—C7175.9 (3)
O2Wii—Cu2—N7—N898.3 (3)N8—N7—C6—N101.0 (4)
O2W—Cu2—N7—N881.7 (3)Cu2—N7—C6—N10179.9 (2)
N11—Cu2—N7—C64.4 (2)N8—N7—C6—C7176.0 (3)
N11ii—Cu2—N7—C6175.6 (2)Cu2—N7—C6—C73.0 (4)
O2Wii—Cu2—N7—C683.0 (2)C8—N12—C7—N110.7 (5)
O2W—Cu2—N7—C697.0 (2)C8—N12—C7—C6176.9 (3)
C6—N7—N8—N91.1 (4)C10—N11—C7—N120.8 (5)
Cu2—N7—N8—N9179.8 (2)Cu2—N11—C7—N12177.1 (3)
N7—N8—N9—N100.7 (4)C10—N11—C7—C6176.9 (3)
N8—N9—N10—C60.1 (4)Cu2—N11—C7—C65.2 (3)
N7—Cu2—N11—C10177.1 (3)N10—C6—C7—N123.1 (6)
N7ii—Cu2—N11—C102.9 (3)N7—C6—C7—N12179.5 (3)
O2Wii—Cu2—N11—C1092.9 (3)N10—C6—C7—N11174.7 (3)
O2W—Cu2—N11—C1087.1 (3)N7—C6—C7—N111.6 (4)
N7—Cu2—N11—C75.4 (2)C7—N12—C8—C90.2 (6)
N7ii—Cu2—N11—C7174.6 (2)N12—C8—C9—C100.2 (6)
O2Wii—Cu2—N11—C784.6 (2)C7—N11—C10—C90.4 (5)
O2W—Cu2—N11—C795.4 (2)Cu2—N11—C10—C9177.1 (3)
N3—N4—C1—N10.9 (3)C8—C9—C10—N110.0 (6)
N3—N4—C1—C2176.0 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4iii0.84 (1)2.11 (1)2.939 (3)169 (4)
O1W—H1WB···N100.84 (1)2.03 (1)2.869 (3)174 (4)
O2W—H2WB···N30.85 (1)2.02 (2)2.845 (3)164 (4)
O2W—H2WA···N9iv0.85 (1)2.00 (1)2.835 (3)170 (4)
Symmetry codes: (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H3N6)2(H2O)2]
Mr393.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.329 (2), 8.107 (2), 12.926 (3)
α, β, γ (°)86.68 (3), 89.84 (3), 77.49 (3)
V3)748.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.40 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.956, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7532, 3433, 2314
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.04
No. of reflections3433
No. of parameters241
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.39

Computer programs: SMART (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Cu1—N11.977 (2)Cu2—N71.967 (2)
Cu1—N52.057 (2)Cu2—N112.062 (2)
Cu1—O1W2.406 (2)Cu2—O2W2.411 (3)
N1—Cu1—N1i180.0N7—Cu2—N7ii180.0 (2)
N1—Cu1—N5i99.14 (9)N7—Cu2—N1180.25 (10)
N1—Cu1—N580.86 (9)N7ii—Cu2—N1199.75 (10)
N1—Cu1—O1W89.66 (9)N7—Cu2—O2Wii89.55 (9)
N1i—Cu1—O1W90.34 (9)N7—Cu2—O2W90.45 (9)
N5i—Cu1—N5180.00 (6)N11—Cu2—O2W92.58 (9)
N5i—Cu1—O1W89.00 (9)N11—Cu2—O2Wii87.42 (9)
N5—Cu1—O1W91.00 (9)N11—Cu2—N11ii180.00 (12)
O1Wi—Cu1—O1W180.00 (7)O2Wii—Cu2—O2W180.00 (19)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4iii0.84 (1)2.11 (1)2.939 (3)169 (4)
O1W—H1WB···N100.84 (1)2.03 (1)2.869 (3)174 (4)
O2W—H2WB···N30.85 (1)2.02 (2)2.845 (3)164 (4)
O2W—H2WA···N9iv0.85 (1)2.00 (1)2.835 (3)170 (4)
Symmetry codes: (iii) x1, y, z; (iv) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds