Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [Sm2(C8H8NO2)6(C12H8N2)2]n, the SmIII atoms are bridged by two terdentate, two bidentate and four mondentate carboxylate groups with an inversion centre between the two SmIII ions. Each Sm atom is nine-coordinated by two N atoms of 1,10-phenanthroline and seven O atoms of four anilinoacetate ligands. In the crystal structure, the chains are linked by hydrogen bonds into a polymeric ribbon structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043528/at2392sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043528/at2392Isup2.hkl
Contains datablock I

CCDC reference: 1233743

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.050
  • wR factor = 0.152
  • Data-to-parameter ratio = 18.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N4 PLAT414_ALERT_2_B Short Intra D-H..H-X H5 .. H12 .. 1.81 Ang.
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.98 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C6 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C23 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C33 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C15 -C20 1.37 Ang. PLAT332_ALERT_2_C Large Phenyl C-C Range C23 -C28 0.18 Ang. PLAT333_ALERT_2_C Large Average Benzene C-C Dist. C4 -C6 1.43 Ang. PLAT335_ALERT_2_C Large Benzene C-C Range ....... C4 -C6 0.16 Ang. PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 13 PLAT414_ALERT_2_C Short Intra D-H..H-X H1 .. H3A .. 1.93 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N4 - H4 ... ? PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 71.00 A   3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Sm1 (3) 2.73 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, there has been great interest in the synthesis of metal organic frameworks (MOFs) with organic ligands and rare earth metals because of their novel structures, fascinating properties and important roles in special materials having optical, electronic, magnetic and biological importance potential applications (Daiguebonne et al., 2000; Farrugia et al., 2000; Tsukube & Shinoda, 2002; Zhang et al., 2005). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Starynowicz, 1991, 1993; Kay et al., 1972; Ma et al., 1999; Zeng et al., 2000; Mao et al., 1998). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The title compound, [Sm2(C8H8NO2)6(C12H8N2)2]n, which are the metal organic framework synthesized by the anilinoacetate ligand and the rare earth metal Sm, are bridged by two terdentate, two bidentate and four mondentate carboxyl groups with an inversion centre between the two SmIII ions. Each Sm atom is nine-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and seven O atoms of four anilinoacetate ligands (Table 1). The Sm—O bond lengths are in the range 2.414 (3) to 2.822 (4) Å. The Sm—N bond lengths are in the range 2.710 (4) to 2.728 (4) Å. In the crystal structure, N—H···O, C—H···N and C—H···O hydrogen bonds (Fig. 2 and Table 2) seem to be effective in the stabilization of the structure, resulting in the formation of a supramolecular network structure.

Related literature top

For related literature, see: Allen et al. (1987); Daiguebonne et al. (2000); Farrugia et al. (2000); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Starynowicz (1991, 1993); Tsukube & Shinoda (2002); Zhang et al. (2005); Zeng et al. (2000).

Experimental top

Crystals of the title compound (I) were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Samarium (III) nitrate hexahydrate (218.5 mg, 0.5 mmol), phen (198 mg, 1 mmol), anilinoacetic acid (146.2 mg, 1 mmol), ammonia (0.5 mol/l, 2 ml) and distilled water (6 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 423 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

The H atoms were positioned geometrically, with N— H = 0.86 Å (for NH) and C—H = 0.93 - 0.97 Å (for CH), and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.2 for aromatic H atoms and x = 1.5 for all other H atoms.

Structure description top

In recent years, there has been great interest in the synthesis of metal organic frameworks (MOFs) with organic ligands and rare earth metals because of their novel structures, fascinating properties and important roles in special materials having optical, electronic, magnetic and biological importance potential applications (Daiguebonne et al., 2000; Farrugia et al., 2000; Tsukube & Shinoda, 2002; Zhang et al., 2005). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Starynowicz, 1991, 1993; Kay et al., 1972; Ma et al., 1999; Zeng et al., 2000; Mao et al., 1998). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The title compound, [Sm2(C8H8NO2)6(C12H8N2)2]n, which are the metal organic framework synthesized by the anilinoacetate ligand and the rare earth metal Sm, are bridged by two terdentate, two bidentate and four mondentate carboxyl groups with an inversion centre between the two SmIII ions. Each Sm atom is nine-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and seven O atoms of four anilinoacetate ligands (Table 1). The Sm—O bond lengths are in the range 2.414 (3) to 2.822 (4) Å. The Sm—N bond lengths are in the range 2.710 (4) to 2.728 (4) Å. In the crystal structure, N—H···O, C—H···N and C—H···O hydrogen bonds (Fig. 2 and Table 2) seem to be effective in the stabilization of the structure, resulting in the formation of a supramolecular network structure.

For related literature, see: Allen et al. (1987); Daiguebonne et al. (2000); Farrugia et al. (2000); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Starynowicz (1991, 1993); Tsukube & Shinoda (2002); Zhang et al. (2005); Zeng et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): 2 - x, -y, 2 - z]. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
catena-Poly[[bis(µ-anilinoacetato-κ2O:O')bis(µ-αnilinoacetato-κ3O,O':O)bis[(1,10-phenanthroline-\k2N,N')samarium(III)]- bis-(µ-anilinoacetato-κ2O:O')] top
Crystal data top
[Sm2(C8H8NO2)6(C12H8N2)2]F(000) = 1572
Mr = 1562.04Dx = 1.536 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8997 reflections
a = 19.998 (3) Åθ = 2.7–26.7°
b = 8.498 (2) ŵ = 1.79 mm1
c = 20.783 (2) ÅT = 273 K
β = 106.998 (5)°Plane, colourless
V = 3377.7 (10) Å30.33 × 0.12 × 0.08 mm
Z = 2
Data collection top
Bruker APEX II area-detector
diffractometer
7519 independent reflections
Radiation source: fine-focus sealed tube4974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.590, Tmax = 0.871k = 1011
27195 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1002P)2 + 0.285P]
where P = (Fo2 + 2Fc2)/3
7519 reflections(Δ/σ)max = 0.002
403 parametersΔρmax = 1.54 e Å3
3 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Sm2(C8H8NO2)6(C12H8N2)2]V = 3377.7 (10) Å3
Mr = 1562.04Z = 2
Monoclinic, P21/nMo Kα radiation
a = 19.998 (3) ŵ = 1.79 mm1
b = 8.498 (2) ÅT = 273 K
c = 20.783 (2) Å0.33 × 0.12 × 0.08 mm
β = 106.998 (5)°
Data collection top
Bruker APEX II area-detector
diffractometer
7519 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4974 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.871Rint = 0.043
27195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.98Δρmax = 1.54 e Å3
7519 reflectionsΔρmin = 0.81 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.931196 (13)0.19068 (3)0.964300 (12)0.03994 (12)
O10.84626 (17)0.0361 (4)0.91902 (17)0.0413 (8)
O20.94708 (19)0.1388 (5)0.97740 (18)0.0480 (9)
O30.97071 (19)0.0614 (4)0.87480 (17)0.0447 (8)
O41.06691 (19)0.0829 (4)0.92152 (17)0.0473 (9)
O50.94009 (19)0.4211 (4)1.03423 (17)0.0447 (8)
O61.0073 (2)0.6128 (5)1.09082 (17)0.0531 (10)
N10.7968 (2)0.2338 (6)0.9669 (2)0.0444 (10)
N20.8342 (3)0.3067 (5)0.8547 (2)0.0451 (11)
N31.1177 (2)0.0164 (5)0.8215 (2)0.0481 (11)
H3A1.13900.07460.85510.058*
N40.7857 (2)0.3269 (5)0.8983 (2)0.0447 (11)
H40.76280.34190.85680.054*
N50.9861 (2)0.5266 (5)1.20625 (19)0.0436 (11)
H51.01600.59821.20470.052*
C10.7787 (3)0.1908 (7)1.0198 (3)0.0606 (17)
H10.81370.16761.05920.073*
C20.7093 (4)0.1781 (9)1.0197 (4)0.080 (2)
H20.69810.14871.05840.097*
C30.6582 (4)0.2099 (9)0.9616 (5)0.086 (3)
H30.61150.19890.96030.103*
C40.6742 (4)0.2571 (10)0.9056 (4)0.0717 (19)
C50.7467 (3)0.2673 (7)0.9095 (3)0.0508 (14)
C60.6212 (5)0.2936 (13)0.8394 (6)0.115 (4)
H60.57380.28190.83480.137*
C70.6416 (5)0.3427 (12)0.7869 (5)0.098 (3)
H70.60800.37020.74710.118*
C80.7132 (4)0.3537 (9)0.7906 (3)0.0653 (18)
C90.7671 (3)0.3102 (6)0.8507 (3)0.0499 (14)
C100.7358 (5)0.4034 (9)0.7370 (3)0.086 (2)
H100.70340.43810.69770.103*
C110.8045 (5)0.4019 (9)0.7413 (3)0.078 (2)
H110.81970.43540.70540.094*
C120.8524 (4)0.3491 (7)0.8008 (3)0.0611 (17)
H120.89940.34340.80260.073*
C131.0287 (3)0.0024 (6)0.8770 (2)0.0408 (12)
C141.0520 (3)0.0521 (7)0.8172 (3)0.0525 (14)
H14A1.01780.01880.77600.063*
H14B1.05570.16580.81640.063*
C151.1463 (3)0.0134 (8)0.7697 (3)0.0604 (16)
C161.2074 (4)0.0576 (10)0.7761 (4)0.074 (2)
H161.22770.12030.81340.089*
C171.2401 (4)0.0366 (11)0.7264 (5)0.090 (2)
H171.28330.08320.73080.108*
C181.2091 (6)0.0522 (10)0.6712 (5)0.104 (3)
H181.23110.06340.63760.125*
C191.1481 (6)0.1232 (12)0.6642 (5)0.106 (3)
H191.12750.18360.62630.128*
C201.1148 (4)0.1056 (10)0.7154 (4)0.082 (2)
H201.07250.15550.71220.098*
C210.8834 (3)0.1514 (7)0.9387 (2)0.0417 (12)
C220.8569 (3)0.3142 (6)0.9196 (3)0.0534 (15)
H22A0.87540.35140.88410.064*
H22B0.87480.38260.95820.064*
C230.7543 (7)0.3144 (10)0.9466 (8)0.1220 (17)
C240.7823 (7)0.2775 (10)1.0106 (7)0.1220 (17)
H240.83000.25751.02670.146*
C250.7405 (6)0.2680 (12)1.0550 (7)0.1220 (17)
H250.76000.24401.10030.146*
C260.6741 (7)0.2941 (11)1.0303 (7)0.1220 (17)
H260.64720.28471.05970.146*
C270.6369 (7)0.3372 (11)0.9601 (7)0.1220 (17)
H270.58930.35910.94480.146*
C280.6792 (6)0.3411 (12)0.9210 (7)0.1220 (17)
H280.65990.36180.87540.146*
C290.9695 (3)0.4988 (6)1.0865 (3)0.0414 (12)
C300.9487 (3)0.4451 (7)1.1472 (3)0.0536 (14)
H30A0.89900.46231.13920.064*
H30B0.95760.33311.15370.064*
C310.9739 (3)0.4896 (7)1.2654 (3)0.0531 (14)
C320.9277 (4)0.3796 (9)1.2718 (3)0.0679 (19)
H320.90150.32441.23420.081*
C330.9192 (6)0.3492 (13)1.3339 (5)0.106 (3)
H330.88830.27131.33850.127*
C340.9573 (5)0.4356 (12)1.3906 (4)0.099 (3)
H340.94970.41991.43220.119*
C351.0045 (4)0.5409 (10)1.3836 (3)0.086 (2)
H351.03120.59541.42120.103*
C361.0143 (4)0.5699 (9)1.3219 (3)0.0692 (18)
H361.04770.64251.31790.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.04626 (18)0.03404 (18)0.03452 (17)0.00154 (11)0.00400 (11)0.00062 (11)
O10.0414 (18)0.0306 (19)0.045 (2)0.0002 (15)0.0011 (15)0.0031 (15)
O20.046 (2)0.047 (2)0.043 (2)0.0021 (18)0.0004 (16)0.0087 (17)
O30.054 (2)0.043 (2)0.0378 (19)0.0038 (18)0.0138 (16)0.0029 (16)
O40.057 (2)0.046 (2)0.040 (2)0.0070 (18)0.0157 (17)0.0103 (17)
O50.063 (2)0.0307 (19)0.0391 (19)0.0050 (17)0.0125 (16)0.0051 (15)
O60.077 (3)0.049 (2)0.0344 (19)0.024 (2)0.0176 (18)0.0038 (17)
N10.043 (2)0.038 (2)0.045 (3)0.003 (2)0.002 (2)0.008 (2)
N20.057 (3)0.038 (3)0.032 (2)0.002 (2)0.0015 (19)0.0013 (18)
N30.048 (2)0.063 (3)0.039 (2)0.018 (2)0.022 (2)0.023 (2)
N40.040 (2)0.032 (3)0.051 (3)0.0124 (18)0.003 (2)0.0068 (19)
N50.063 (3)0.041 (3)0.028 (2)0.028 (2)0.0153 (19)0.0057 (17)
C10.052 (3)0.072 (5)0.056 (4)0.007 (3)0.014 (3)0.004 (3)
C20.057 (4)0.108 (7)0.081 (5)0.001 (4)0.029 (4)0.014 (4)
C30.046 (4)0.090 (7)0.118 (8)0.004 (4)0.018 (4)0.013 (5)
C40.052 (4)0.080 (5)0.070 (5)0.005 (4)0.002 (3)0.017 (4)
C50.051 (3)0.033 (3)0.059 (4)0.008 (2)0.001 (3)0.009 (3)
C60.052 (5)0.152 (11)0.109 (8)0.019 (5)0.024 (5)0.037 (7)
C70.080 (6)0.110 (7)0.073 (6)0.037 (5)0.027 (4)0.012 (5)
C80.067 (4)0.063 (4)0.045 (4)0.018 (3)0.016 (3)0.008 (3)
C90.057 (3)0.032 (3)0.045 (3)0.005 (2)0.009 (3)0.004 (2)
C100.119 (7)0.065 (5)0.046 (4)0.015 (5)0.019 (4)0.002 (3)
C110.114 (6)0.075 (5)0.034 (3)0.001 (5)0.003 (4)0.011 (3)
C120.076 (4)0.049 (4)0.048 (4)0.003 (3)0.003 (3)0.008 (3)
C130.050 (3)0.033 (3)0.038 (3)0.008 (2)0.010 (2)0.002 (2)
C140.063 (3)0.053 (4)0.043 (3)0.005 (3)0.019 (3)0.010 (3)
C150.066 (4)0.066 (4)0.055 (4)0.009 (3)0.027 (3)0.002 (3)
C160.075 (5)0.092 (5)0.067 (4)0.005 (4)0.037 (4)0.001 (4)
C170.082 (5)0.094 (7)0.109 (7)0.009 (5)0.053 (5)0.011 (5)
C180.138 (8)0.077 (6)0.138 (9)0.014 (6)0.104 (7)0.002 (6)
C190.153 (9)0.103 (7)0.089 (6)0.015 (7)0.077 (6)0.031 (5)
C200.098 (6)0.087 (6)0.077 (5)0.001 (5)0.053 (4)0.020 (4)
C210.044 (3)0.047 (3)0.029 (2)0.006 (2)0.004 (2)0.004 (2)
C220.059 (4)0.045 (4)0.052 (3)0.003 (3)0.010 (3)0.007 (3)
C230.134 (4)0.086 (3)0.169 (5)0.015 (3)0.079 (4)0.031 (3)
C240.134 (4)0.086 (3)0.169 (5)0.015 (3)0.079 (4)0.031 (3)
C250.134 (4)0.086 (3)0.169 (5)0.015 (3)0.079 (4)0.031 (3)
C260.134 (4)0.086 (3)0.169 (5)0.015 (3)0.079 (4)0.031 (3)
C270.134 (4)0.086 (3)0.169 (5)0.015 (3)0.079 (4)0.031 (3)
C280.134 (4)0.086 (3)0.169 (5)0.015 (3)0.079 (4)0.031 (3)
C290.055 (3)0.030 (3)0.038 (3)0.001 (2)0.012 (2)0.003 (2)
C300.073 (4)0.049 (3)0.040 (3)0.021 (3)0.018 (3)0.005 (2)
C310.072 (4)0.052 (4)0.033 (3)0.001 (3)0.014 (3)0.003 (2)
C320.071 (4)0.088 (5)0.046 (3)0.034 (4)0.019 (3)0.006 (3)
C330.124 (8)0.134 (8)0.075 (6)0.049 (7)0.053 (6)0.002 (5)
C340.118 (7)0.143 (8)0.044 (4)0.029 (6)0.034 (4)0.005 (5)
C350.112 (6)0.100 (6)0.040 (4)0.020 (5)0.013 (4)0.008 (4)
C360.079 (4)0.073 (5)0.052 (4)0.018 (4)0.013 (3)0.012 (3)
Geometric parameters (Å, º) top
Sm1—O12.559 (3)C10—H100.9300
Sm1—O22.822 (4)C11—C121.398 (9)
Sm1—O2i2.421 (4)C11—H110.9300
Sm1—O32.480 (3)C12—H120.9300
Sm1—O4i2.533 (3)C13—C141.509 (7)
Sm1—O52.414 (3)C14—H14A0.9700
Sm1—O6ii2.537 (4)C14—H14B0.9700
Sm1—N12.728 (4)C15—C161.334 (9)
Sm1—N22.710 (4)C15—C201.366 (10)
O1—C211.225 (6)C16—C171.386 (11)
O2—C211.297 (6)C16—H160.9300
O2—Sm1i2.421 (4)C17—C181.363 (13)
O3—C131.252 (6)C17—H170.9300
O4—C131.247 (6)C18—C191.331 (12)
O4—Sm1i2.533 (3)C18—H180.9300
O5—C291.260 (6)C19—C201.419 (10)
O6—C291.215 (6)C19—H190.9300
O6—Sm1ii2.537 (4)C20—H200.9300
N1—C11.307 (8)C21—C221.493 (8)
N1—C51.345 (7)C22—H22A0.9700
N2—C91.321 (8)C22—H22B0.9700
N2—C121.326 (8)C23—C241.320 (17)
N3—C151.383 (7)C23—C281.457 (17)
N3—C141.415 (7)C24—C251.418 (14)
N3—H3A0.8600C24—H240.9300
N4—C231.337 (13)C25—C261.293 (16)
N4—C221.365 (7)C25—H250.9300
N4—H40.8600C26—C271.478 (17)
N5—C311.359 (7)C26—H260.9300
N5—C301.418 (6)C27—C281.332 (14)
N5—H50.8600C27—H270.9300
C1—C21.390 (9)C28—H280.9300
C1—H10.9300C29—C301.511 (7)
C2—C31.363 (12)C30—H30A0.9700
C2—H20.9300C30—H30B0.9700
C3—C41.354 (12)C31—C321.347 (8)
C3—H30.9300C31—C361.395 (8)
C4—C51.431 (9)C32—C331.375 (10)
C4—C61.504 (12)C32—H320.9300
C5—C91.443 (9)C33—C341.407 (12)
C6—C71.338 (14)C33—H330.9300
C6—H60.9300C34—C351.340 (11)
C7—C81.414 (12)C34—H340.9300
C7—H70.9300C35—C361.374 (10)
C8—C101.385 (11)C35—H350.9300
C8—C91.440 (8)C36—H360.9300
C10—C111.350 (11)
O1—Sm1—O248.11 (10)C8—C10—H10119.7
O1—Sm1—O373.35 (12)C10—C11—C12118.9 (7)
O1—Sm1—O5139.14 (12)C10—C11—H11120.5
O2—Sm1—O365.25 (11)C12—C11—H11120.5
O2—Sm1—O5139.49 (11)N2—C12—C11123.2 (7)
O3—Sm1—O5145.83 (12)N2—C12—H12118.4
O1—Sm1—N163.68 (12)C11—C12—H12118.4
O2—Sm1—N1102.42 (13)O4—C13—O3128.3 (5)
O3—Sm1—N1127.29 (13)O4—C13—C14120.2 (5)
O5—Sm1—N177.22 (13)O3—C13—C14111.4 (4)
O1—Sm1—N274.31 (12)N3—C14—C13109.8 (4)
O2—Sm1—N2118.35 (11)N3—C14—H14A109.7
O3—Sm1—N280.65 (13)C13—C14—H14A109.7
O5—Sm1—N296.87 (12)N3—C14—H14B109.7
N1—Sm1—N260.01 (14)C13—C14—H14B109.7
O5—Sm1—O2i87.71 (14)H14A—C14—H14B108.2
O2i—Sm1—O378.49 (12)C16—C15—C20122.1 (6)
O5—Sm1—O4i75.58 (12)C16—C15—N3114.5 (6)
O2i—Sm1—O4i74.21 (12)C20—C15—N3123.4 (6)
O3—Sm1—O4i128.43 (12)C15—C16—C17119.0 (8)
O5—Sm1—O6ii77.15 (12)C15—C16—H16120.5
O2i—Sm1—O6ii78.27 (13)C17—C16—H16120.5
O3—Sm1—O6ii69.53 (12)C18—C17—C16120.2 (8)
O4i—Sm1—O6ii141.66 (12)C18—C17—H17119.9
O2i—Sm1—O1120.60 (13)C16—C17—H17119.9
O4i—Sm1—O184.19 (12)C19—C18—C17121.2 (8)
O6ii—Sm1—O1133.38 (11)C19—C18—H18119.4
O2i—Sm1—N2148.76 (14)C17—C18—H18119.4
O4i—Sm1—N2136.88 (14)C18—C19—C20119.2 (9)
O6ii—Sm1—N272.75 (14)C18—C19—H19120.4
O2i—Sm1—N1150.06 (13)C20—C19—H19120.4
O4i—Sm1—N177.01 (13)C15—C20—C19118.3 (8)
O6ii—Sm1—N1122.05 (14)C15—C20—H20120.8
O2i—Sm1—O272.71 (14)C19—C20—H20120.8
O4i—Sm1—O265.20 (11)O1—C21—O2122.0 (5)
O6ii—Sm1—O2129.87 (12)O1—C21—C22121.3 (5)
C21—O1—Sm1102.0 (3)O2—C21—C22116.7 (5)
C21—O2—Sm1i163.1 (4)N4—C22—C21114.5 (5)
C21—O2—Sm187.7 (3)N4—C22—H22A108.6
Sm1i—O2—Sm1107.29 (14)C21—C22—H22A108.6
C13—O3—Sm1130.2 (3)N4—C22—H22B108.6
C13—O4—Sm1i138.1 (3)C21—C22—H22B108.6
C29—O5—Sm1151.4 (3)H22A—C22—H22B107.6
C29—O6—Sm1ii149.8 (3)C24—C23—N4128.4 (13)
C1—N1—C5119.1 (5)C24—C23—C28119.6 (12)
C1—N1—Sm1119.8 (4)N4—C23—C28112.0 (13)
C5—N1—Sm1119.6 (4)C23—C24—C25120.7 (13)
C9—N2—C12117.8 (5)C23—C24—H24119.6
C9—N2—Sm1121.7 (4)C25—C24—H24119.6
C12—N2—Sm1120.2 (4)C26—C25—C24117.7 (14)
C15—N3—C14117.7 (5)C26—C25—H25121.2
C15—N3—H3A121.2C24—C25—H25121.2
C14—N3—H3A121.2C25—C26—C27126.6 (12)
C23—N4—C22115.1 (8)C25—C26—H26116.7
C23—N4—H4122.4C27—C26—H26116.7
C22—N4—H4122.4C28—C27—C26112.5 (12)
C31—N5—C30118.7 (4)C28—C27—H27123.8
C31—N5—H5120.7C26—C27—H27123.8
C30—N5—H5120.7C27—C28—C23122.9 (14)
N1—C1—C2122.9 (7)C27—C28—H28118.6
N1—C1—H1118.5C23—C28—H28118.6
C2—C1—H1118.5O6—C29—O5127.3 (5)
C3—C2—C1118.4 (7)O6—C29—C30119.7 (5)
C3—C2—H2120.8O5—C29—C30112.8 (5)
C1—C2—H2120.8N5—C30—C29111.7 (4)
C4—C3—C2121.0 (7)N5—C30—H30A109.3
C4—C3—H3119.5C29—C30—H30A109.3
C2—C3—H3119.5N5—C30—H30B109.3
C3—C4—C5117.4 (7)C29—C30—H30B109.3
C3—C4—C6124.6 (8)H30A—C30—H30B107.9
C5—C4—C6118.0 (8)C32—C31—N5124.0 (5)
N1—C5—C4121.2 (6)C32—C31—C36120.2 (6)
N1—C5—C9118.8 (5)N5—C31—C36115.8 (6)
C4—C5—C9120.0 (6)C31—C32—C33119.9 (7)
C7—C6—C4120.6 (8)C31—C32—H32120.1
C7—C6—H6119.7C33—C32—H32120.1
C4—C6—H6119.7C32—C33—C34120.2 (8)
C6—C7—C8121.4 (7)C32—C33—H33119.9
C6—C7—H7119.3C34—C33—H33119.9
C8—C7—H7119.3C35—C34—C33118.9 (7)
C10—C8—C7122.7 (7)C35—C34—H34120.5
C10—C8—C9116.1 (7)C33—C34—H34120.5
C7—C8—C9121.2 (7)C34—C35—C36121.2 (7)
N2—C9—C8123.3 (6)C34—C35—H35119.4
N2—C9—C5118.3 (5)C36—C35—H35119.4
C8—C9—C5118.4 (6)C35—C36—C31119.5 (7)
C11—C10—C8120.5 (6)C35—C36—H36120.3
C11—C10—H10119.7C31—C36—H36120.3
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O60.862.322.658 (5)103
N3—H3A···O40.862.272.628 (5)105
C22—H22B···O5iii0.972.403.345 (7)163
C12—H12···N5ii0.932.603.441 (8)151
C12—H12···O6ii0.932.473.059 (8)121
C10—H10···O1iv0.932.353.218 (7)156
C1—H1···O4i0.932.413.108 (8)132
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x, y1, z; (iv) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Sm2(C8H8NO2)6(C12H8N2)2]
Mr1562.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)19.998 (3), 8.498 (2), 20.783 (2)
β (°) 106.998 (5)
V3)3377.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.33 × 0.12 × 0.08
Data collection
DiffractometerBruker APEX II area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.590, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
27195, 7519, 4974
Rint0.043
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.152, 0.98
No. of reflections7519
No. of parameters403
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 0.81

Computer programs: APEX2 (Bruker, 2005), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Selected geometric parameters (Å, º) top
Sm1—O12.559 (3)Sm1—O52.414 (3)
Sm1—O22.822 (4)Sm1—O6ii2.537 (4)
Sm1—O2i2.421 (4)Sm1—N12.728 (4)
Sm1—O32.480 (3)Sm1—N22.710 (4)
Sm1—O4i2.533 (3)
O1—Sm1—O248.11 (10)O3—Sm1—N1127.29 (13)
O1—Sm1—O373.35 (12)O5—Sm1—N177.22 (13)
O1—Sm1—O5139.14 (12)O1—Sm1—N274.31 (12)
O2—Sm1—O365.25 (11)O2—Sm1—N2118.35 (11)
O2—Sm1—O5139.49 (11)O3—Sm1—N280.65 (13)
O3—Sm1—O5145.83 (12)O5—Sm1—N296.87 (12)
O1—Sm1—N163.68 (12)N1—Sm1—N260.01 (14)
O2—Sm1—N1102.42 (13)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O60.862.322.658 (5)103
N3—H3A···O40.862.272.628 (5)105
C22—H22B···O5iii0.972.403.345 (7)163
C12—H12···N5ii0.932.603.441 (8)151
C12—H12···O6ii0.932.473.059 (8)121
C10—H10···O1iv0.932.353.218 (7)156
C1—H1···O4i0.932.413.108 (8)132
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x, y1, z; (iv) x+3/2, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds