Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu2(NO3)2(C10H8N2)(C12H8N2)2(H2O)2](NO3)2, comprises a binuclear copper complex cation and two nitrate anions. In the doubly-charged bridged dicopper cation, each Cu atom is five-coordinated in a distorted square-pyramidal geometry, formed by one O atom of the coordinated water mol­ecule, one O atom of a coordinated nitrate anion, two N atoms from the bidentate 1,10-phenanthroline (phen) ligand and another N atom from the 4,4′-bipyridine (bipy) ligand. The bipy ligand bridges the Cu atoms to give a centrosymmetric binuclear structure. The complex is stabilized by hydrogen bonds and aromatic ring-stacking inter­actions [average inter­planar distance 3.3139 (2) Å and ring-centroid separation 3.7971 (9) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037804/at2361sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037804/at2361Isup2.hkl
Contains datablock I

CCDC reference: 660060

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.050
  • wR factor = 0.227
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N5 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 13 N3 -CU1 -N2 -C1 -148.80 1.30 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 17 N3 -CU1 -N2 -C12 31.20 1.50 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 22 N2 -CU1 -N3 -C13 -112.00 1.40 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 26 N2 -CU1 -N3 -C17 59.00 1.50 1.555 1.555 1.555 1.555
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.11
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In the previous literatures, binuclear copper complexes containing (phen-Cu-bipy-Cu-phen) subunit (Blake et al., 1998; Wu et al., 2002; Lin et al., 2005) have been reported. In our paper, we describe another new compound containing (phen-Cu-bipy-Cu-phen) subunit, (I), (Fig.1).

Compound (I) is comprised of a binuclear copper complex cation and two nitrate anions. In the doubly charged bridged dicopper cation, each Cu center has distorted square-pyramidal geometry, formed by one O atom of the coordinated water molecule, one O atom of coordinated nitrate anion, two N atoms from bidentate 1,10-phenanthroline (phen) ligand and another N atom from 4,4'-bipyridine (bipy) (Table 1). The plane N1/N2/O1/N3 defines the base of the pyramid while water O7 occupies the apex. The distance from Cu1 to the least-squares plane N1/N2/O1/N3 is 0.1924 (4)Å towards O7. The bipy ligand bridge the Cu atoms to give this binuclear structure.

The water molecules and coordinated nitrate O atoms take part in intermolecular hydrogen bonds interactions and they join complex cations into a one-dimensional chain structure along a axis (Fig. 2 and Table 2). The chains are further expanded into two-dimensional network via the π-π stacking between 1,10-phenanthroline rings of adjacent chains of (I) (Fig. 3). The dihedral angle of aromatics involved in stacking is 0.0002 (3)°. Interplanar average distance and ring-centroid separation distance are 3.3139 (2) Å, 3.7971 (9) Å, respectively.

Related literature top

For related literature, see: Blake et al. (1998); Wu et al. (2002); Lin et al. (2005).

Experimental top

A 10 ml water solution of Cu(NO)3.3H2O (0.242 g,1 mmol) was dropped into 10 ml me thanol solution of 4,4'-bipyridine (0.078 g, 0.5 mmol) and 1,10-phenanthroline (0.18 g,1 mmol) to be stirred for 4 h at 333 K. The filtrate stayed in air for about one week to obtain blue block-shaped crystals. Analysis, found (%): C 43.85, H 3.05, N 15.16. C34H28Cu2N10O14 requires (%): C 43.98, H 3.02, N 15.09.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å, O—H = 0.82 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

In the previous literatures, binuclear copper complexes containing (phen-Cu-bipy-Cu-phen) subunit (Blake et al., 1998; Wu et al., 2002; Lin et al., 2005) have been reported. In our paper, we describe another new compound containing (phen-Cu-bipy-Cu-phen) subunit, (I), (Fig.1).

Compound (I) is comprised of a binuclear copper complex cation and two nitrate anions. In the doubly charged bridged dicopper cation, each Cu center has distorted square-pyramidal geometry, formed by one O atom of the coordinated water molecule, one O atom of coordinated nitrate anion, two N atoms from bidentate 1,10-phenanthroline (phen) ligand and another N atom from 4,4'-bipyridine (bipy) (Table 1). The plane N1/N2/O1/N3 defines the base of the pyramid while water O7 occupies the apex. The distance from Cu1 to the least-squares plane N1/N2/O1/N3 is 0.1924 (4)Å towards O7. The bipy ligand bridge the Cu atoms to give this binuclear structure.

The water molecules and coordinated nitrate O atoms take part in intermolecular hydrogen bonds interactions and they join complex cations into a one-dimensional chain structure along a axis (Fig. 2 and Table 2). The chains are further expanded into two-dimensional network via the π-π stacking between 1,10-phenanthroline rings of adjacent chains of (I) (Fig. 3). The dihedral angle of aromatics involved in stacking is 0.0002 (3)°. Interplanar average distance and ring-centroid separation distance are 3.3139 (2) Å, 3.7971 (9) Å, respectively.

For related literature, see: Blake et al. (1998); Wu et al. (2002); Lin et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Atoms with the suffix A are are at the symmetry position (-x + 1, -y + 2, -z + 1).
[Figure 2] Fig. 2. Packing diagram, showing the one-dimensional chain structure of (I), linked via hydrogen bonds (dashed lines). H atoms on C atoms and uncoordinated nitrate anions have been omitted for clarity.
[Figure 3] Fig. 3. The ππ stacking diagram between 1,10-phenanthroline rings of adjacent chains of (I). H atoms on C atoms and uncoordinated nitrate anions have been omitted.
µ-4,4'-Bipyridine-κ2N:N'-bis[aqua(nitrato-κO)(1,10- phenanthroline-κ2N,N')copper(II)] dinitrate top
Crystal data top
[Cu2(NO3)2(C10H8N2)(C12H8N2)2(H2O)2](NO3)2Z = 1
Mr = 927.76F(000) = 472
Triclinic, P1Dx = 1.723 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3754 (18) ÅCell parameters from 3225 reflections
b = 8.925 (2) Åθ = 2.7–27.0°
c = 13.812 (3) ŵ = 1.28 mm1
α = 92.347 (2)°T = 291 K
β = 97.596 (2)°Block, blue
γ = 96.311 (3)°0.37 × 0.27 × 0.21 mm
V = 894.3 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3200 independent reflections
Radiation source: fine-focus sealed tube2909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.647, Tmax = 0.776k = 1010
6155 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.183P)2 + 1.6705P]
where P = (Fo2 + 2Fc2)/3
3200 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cu2(NO3)2(C10H8N2)(C12H8N2)2(H2O)2](NO3)2γ = 96.311 (3)°
Mr = 927.76V = 894.3 (4) Å3
Triclinic, P1Z = 1
a = 7.3754 (18) ÅMo Kα radiation
b = 8.925 (2) ŵ = 1.28 mm1
c = 13.812 (3) ÅT = 291 K
α = 92.347 (2)°0.37 × 0.27 × 0.21 mm
β = 97.596 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3200 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2909 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.776Rint = 0.021
6155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.02Δρmax = 0.89 e Å3
3200 reflectionsΔρmin = 0.76 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.69132 (8)0.51338 (6)0.71023 (4)0.0247 (3)
O10.8055 (5)0.4093 (5)0.6066 (3)0.0350 (9)
O21.0496 (6)0.5437 (6)0.6817 (3)0.0462 (11)
O31.0720 (6)0.3763 (6)0.5659 (3)0.0506 (12)
O40.4104 (7)0.0751 (6)0.7586 (4)0.0540 (12)
O50.1351 (9)0.0598 (9)0.6823 (5)0.082 (2)
O60.1944 (10)0.0793 (7)0.8020 (5)0.0754 (18)
O70.4292 (6)0.3593 (5)0.6762 (4)0.0452 (11)
H1W0.44310.27740.69930.068*
H2W0.33030.35870.64040.068*
N10.6613 (6)0.6354 (5)0.8332 (3)0.0260 (9)
N20.7736 (6)0.3662 (5)0.8101 (3)0.0255 (9)
N30.6235 (7)0.6792 (5)0.6252 (3)0.0321 (10)
N40.9803 (6)0.4446 (5)0.6181 (3)0.0322 (10)
N50.2454 (8)0.0181 (6)0.7465 (4)0.0423 (12)
C10.8307 (8)0.2313 (6)0.7951 (4)0.0328 (12)
H10.83630.19600.73140.039*
C20.8818 (8)0.1423 (7)0.8717 (5)0.0381 (13)
H2A0.92070.04870.85890.046*
C30.8750 (8)0.1918 (7)0.9661 (5)0.0397 (14)
H3A0.90840.13181.01740.048*
C40.8170 (7)0.3343 (6)0.9852 (4)0.0293 (11)
C50.8056 (8)0.3986 (7)1.0814 (4)0.0358 (13)
H5A0.83740.34481.13610.043*
C60.7489 (8)0.5364 (7)1.0925 (4)0.0370 (13)
H6A0.74350.57611.15520.044*
C70.6971 (7)0.6229 (6)1.0106 (4)0.0314 (12)
C80.6355 (8)0.7680 (7)1.0179 (4)0.0371 (13)
H80.62650.81321.07860.044*
C90.5897 (8)0.8397 (6)0.9341 (5)0.0379 (13)
H90.54960.93470.93790.045*
C100.6025 (8)0.7715 (6)0.8425 (4)0.0323 (12)
H100.56930.82210.78650.039*
C110.7076 (7)0.5630 (6)0.9160 (4)0.0244 (10)
C120.7669 (7)0.4173 (6)0.9032 (4)0.0249 (10)
C130.4474 (9)0.6993 (7)0.5978 (5)0.0449 (15)
H130.35610.62660.61220.054*
C140.3950 (9)0.8222 (7)0.5495 (5)0.0401 (14)
H140.27060.83140.53250.048*
C150.5268 (8)0.9328 (6)0.5258 (4)0.0295 (11)
C160.7091 (10)0.9111 (8)0.5549 (6)0.0521 (18)
H160.80290.98180.54070.063*
C170.7528 (9)0.7864 (8)0.6044 (5)0.0480 (17)
H170.87610.77600.62410.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0303 (4)0.0238 (4)0.0218 (4)0.0077 (3)0.0047 (3)0.0055 (3)
O10.029 (2)0.047 (2)0.0290 (19)0.0074 (17)0.0032 (15)0.0030 (16)
O20.040 (2)0.055 (3)0.043 (2)0.001 (2)0.0053 (19)0.000 (2)
O30.047 (3)0.072 (3)0.041 (2)0.033 (2)0.015 (2)0.009 (2)
O40.050 (3)0.050 (3)0.060 (3)0.002 (2)0.001 (2)0.008 (2)
O50.059 (3)0.100 (5)0.083 (4)0.008 (3)0.011 (3)0.036 (4)
O60.085 (4)0.057 (3)0.090 (4)0.010 (3)0.027 (3)0.039 (3)
O70.033 (2)0.035 (2)0.064 (3)0.0007 (18)0.007 (2)0.014 (2)
N10.028 (2)0.024 (2)0.027 (2)0.0036 (17)0.0069 (17)0.0044 (16)
N20.025 (2)0.022 (2)0.030 (2)0.0051 (17)0.0061 (17)0.0044 (17)
N30.041 (3)0.031 (2)0.027 (2)0.009 (2)0.0051 (19)0.0078 (18)
N40.033 (2)0.040 (3)0.026 (2)0.010 (2)0.0070 (18)0.0111 (19)
N50.054 (3)0.031 (3)0.045 (3)0.010 (2)0.014 (2)0.004 (2)
C10.032 (3)0.026 (3)0.042 (3)0.004 (2)0.006 (2)0.007 (2)
C20.038 (3)0.025 (3)0.053 (4)0.008 (2)0.003 (3)0.008 (2)
C30.033 (3)0.037 (3)0.050 (4)0.006 (3)0.002 (2)0.023 (3)
C40.023 (2)0.032 (3)0.032 (3)0.000 (2)0.002 (2)0.011 (2)
C50.032 (3)0.047 (3)0.025 (3)0.003 (3)0.003 (2)0.014 (2)
C60.032 (3)0.053 (4)0.024 (3)0.006 (3)0.003 (2)0.002 (2)
C70.025 (3)0.037 (3)0.032 (3)0.003 (2)0.008 (2)0.001 (2)
C80.037 (3)0.038 (3)0.035 (3)0.002 (2)0.009 (2)0.011 (2)
C90.038 (3)0.027 (3)0.051 (4)0.004 (2)0.015 (3)0.005 (2)
C100.038 (3)0.023 (3)0.037 (3)0.007 (2)0.007 (2)0.002 (2)
C110.020 (2)0.027 (3)0.026 (2)0.0016 (19)0.0067 (18)0.0010 (19)
C120.020 (2)0.028 (3)0.028 (2)0.004 (2)0.0020 (18)0.0089 (19)
C130.037 (3)0.032 (3)0.061 (4)0.005 (3)0.009 (3)0.016 (3)
C140.035 (3)0.034 (3)0.047 (3)0.001 (2)0.010 (2)0.014 (2)
C150.042 (3)0.027 (3)0.021 (2)0.008 (2)0.004 (2)0.003 (2)
C160.040 (4)0.054 (4)0.073 (5)0.016 (3)0.026 (3)0.038 (4)
C170.038 (3)0.052 (4)0.063 (4)0.020 (3)0.019 (3)0.028 (3)
Geometric parameters (Å, º) top
Cu1—N31.992 (5)C3—H3A0.9300
Cu1—O12.000 (4)C4—C121.410 (7)
Cu1—N22.025 (4)C4—C51.441 (8)
Cu1—N12.030 (4)C5—C61.351 (9)
Cu1—O72.230 (4)C5—H5A0.9300
O1—N41.280 (6)C6—C71.430 (8)
O2—N41.239 (7)C6—H6A0.9300
O3—N41.238 (6)C7—C111.406 (7)
O4—N51.253 (8)C7—C81.423 (8)
O5—N51.220 (8)C8—C91.367 (9)
O6—N51.243 (8)C8—H80.9300
O7—H1W0.8200C9—C101.400 (8)
O7—H2W0.8251C9—H90.9300
N1—C101.341 (7)C10—H100.9300
N1—C111.359 (7)C11—C121.429 (7)
N2—C11.336 (7)C13—C141.372 (8)
N2—C121.355 (7)C13—H130.9300
N3—C131.338 (8)C14—C151.387 (9)
N3—C171.343 (9)C14—H140.9300
C1—C21.386 (8)C15—C161.388 (9)
C1—H10.9300C15—C15i1.485 (10)
C2—C31.368 (10)C16—C171.376 (9)
C2—H2A0.9300C16—H160.9300
C3—C41.412 (8)C17—H170.9300
N3—Cu1—O193.23 (18)C3—C4—C5124.7 (5)
N3—Cu1—N2172.57 (18)C6—C5—C4120.5 (5)
O1—Cu1—N291.76 (17)C6—C5—H5A119.8
N3—Cu1—N192.10 (18)C4—C5—H5A119.8
O1—Cu1—N1161.67 (18)C5—C6—C7121.9 (5)
N2—Cu1—N181.49 (17)C5—C6—H6A119.1
N3—Cu1—O798.37 (19)C7—C6—H6A119.1
O1—Cu1—O792.06 (18)C11—C7—C8116.8 (5)
N2—Cu1—O786.94 (17)C11—C7—C6118.8 (5)
N1—Cu1—O7104.49 (18)C8—C7—C6124.3 (5)
N4—O1—Cu1111.1 (3)C9—C8—C7118.9 (5)
Cu1—O7—H1W109.5C9—C8—H8120.5
Cu1—O7—H2W136.7C7—C8—H8120.5
H1W—O7—H2W113.0C8—C9—C10120.6 (5)
C10—N1—C11118.0 (5)C8—C9—H9119.7
C10—N1—Cu1129.5 (4)C10—C9—H9119.7
C11—N1—Cu1112.5 (3)N1—C10—C9121.9 (5)
C1—N2—C12118.7 (5)N1—C10—H10119.0
C1—N2—Cu1128.6 (4)C9—C10—H10119.0
C12—N2—Cu1112.6 (3)N1—C11—C7123.7 (5)
C13—N3—C17117.3 (5)N1—C11—C12116.5 (4)
C13—N3—Cu1121.4 (4)C7—C11—C12119.9 (5)
C17—N3—Cu1120.7 (4)N2—C12—C4123.0 (5)
O3—N4—O2123.2 (5)N2—C12—C11116.9 (4)
O3—N4—O1118.3 (5)C4—C12—C11120.1 (5)
O2—N4—O1118.5 (4)N3—C13—C14123.2 (6)
O5—N5—O6120.3 (7)N3—C13—H13118.4
O5—N5—O4120.5 (6)C14—C13—H13118.4
O6—N5—O4119.2 (6)C13—C14—C15120.3 (6)
N2—C1—C2122.0 (5)C13—C14—H14119.8
N2—C1—H1119.0C15—C14—H14119.8
C2—C1—H1119.0C14—C15—C16116.1 (5)
C3—C2—C1120.1 (5)C14—C15—C15i121.2 (7)
C3—C2—H2A119.9C16—C15—C15i122.7 (7)
C1—C2—H2A119.9C17—C16—C15120.8 (6)
C2—C3—C4119.8 (5)C17—C16—H16119.6
C2—C3—H3A120.1C15—C16—H16119.6
C4—C3—H3A120.1N3—C17—C16122.3 (6)
C12—C4—C3116.5 (5)N3—C17—H17118.9
C12—C4—C5118.8 (5)C16—C17—H17118.9
N3—Cu1—O1—N497.0 (4)C5—C6—C7—C110.7 (8)
N2—Cu1—O1—N477.5 (4)C5—C6—C7—C8179.6 (5)
N1—Cu1—O1—N49.7 (7)C11—C7—C8—C90.3 (8)
O7—Cu1—O1—N4164.5 (4)C6—C7—C8—C9180.0 (5)
N3—Cu1—N1—C104.4 (5)C7—C8—C9—C100.2 (9)
O1—Cu1—N1—C10111.3 (6)C11—N1—C10—C90.6 (8)
N2—Cu1—N1—C10179.4 (5)Cu1—N1—C10—C9179.8 (4)
O7—Cu1—N1—C1094.8 (5)C8—C9—C10—N10.7 (9)
N3—Cu1—N1—C11176.3 (4)C10—N1—C11—C70.1 (8)
O1—Cu1—N1—C1169.4 (7)Cu1—N1—C11—C7179.3 (4)
N2—Cu1—N1—C110.1 (3)C10—N1—C11—C12179.1 (4)
O7—Cu1—N1—C1184.5 (4)Cu1—N1—C11—C120.3 (6)
N3—Cu1—N2—C1148.8 (13)C8—C7—C11—N10.5 (8)
O1—Cu1—N2—C116.6 (5)C6—C7—C11—N1179.8 (5)
N1—Cu1—N2—C1179.5 (5)C8—C7—C11—C12179.5 (5)
O7—Cu1—N2—C175.4 (5)C6—C7—C11—C120.8 (8)
N3—Cu1—N2—C1231.2 (15)C1—N2—C12—C40.3 (8)
O1—Cu1—N2—C12163.4 (4)Cu1—N2—C12—C4179.8 (4)
N1—Cu1—N2—C120.5 (3)C1—N2—C12—C11179.1 (5)
O7—Cu1—N2—C12104.6 (4)Cu1—N2—C12—C110.9 (6)
O1—Cu1—N3—C13115.9 (5)C3—C4—C12—N20.3 (8)
N2—Cu1—N3—C13112.0 (14)C5—C4—C12—N2179.9 (5)
N1—Cu1—N3—C1381.6 (5)C3—C4—C12—C11179.7 (5)
O7—Cu1—N3—C1323.4 (5)C5—C4—C12—C110.5 (8)
O1—Cu1—N3—C1773.1 (5)N1—C11—C12—N20.8 (7)
N2—Cu1—N3—C1759.0 (15)C7—C11—C12—N2179.9 (4)
N1—Cu1—N3—C1789.3 (5)N1—C11—C12—C4179.8 (4)
O7—Cu1—N3—C17165.7 (5)C7—C11—C12—C40.7 (8)
Cu1—O1—N4—O3172.2 (4)C17—N3—C13—C140.6 (10)
Cu1—O1—N4—O26.7 (6)Cu1—N3—C13—C14171.9 (5)
C12—N2—C1—C20.5 (8)N3—C13—C14—C150.5 (11)
Cu1—N2—C1—C2179.5 (4)C13—C14—C15—C160.7 (9)
N2—C1—C2—C30.1 (9)C13—C14—C15—C15i179.6 (7)
C1—C2—C3—C40.5 (9)C14—C15—C16—C170.1 (10)
C2—C3—C4—C120.6 (8)C15i—C15—C16—C17178.7 (7)
C2—C3—C4—C5179.5 (5)C13—N3—C17—C161.5 (11)
C12—C4—C5—C60.4 (8)Cu1—N3—C17—C16172.8 (6)
C3—C4—C5—C6179.8 (6)C15—C16—C17—N31.3 (12)
C4—C5—C6—C70.5 (9)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2W···O3ii0.832.072.886 (6)172
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(NO3)2(C10H8N2)(C12H8N2)2(H2O)2](NO3)2
Mr927.76
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.3754 (18), 8.925 (2), 13.812 (3)
α, β, γ (°)92.347 (2), 97.596 (2), 96.311 (3)
V3)894.3 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.37 × 0.27 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.647, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
6155, 3200, 2909
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.227, 1.02
No. of reflections3200
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.76

Computer programs: APEX2 (Bruker, 2004), APEX2, SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N31.992 (5)Cu1—N12.030 (4)
Cu1—O12.000 (4)Cu1—O72.230 (4)
Cu1—N22.025 (4)
N3—Cu1—O193.23 (18)N2—Cu1—N181.49 (17)
O1—Cu1—N291.76 (17)O1—Cu1—O792.06 (18)
N3—Cu1—N192.10 (18)N1—Cu1—O7104.49 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2W···O3i0.832.072.886 (6)171.9
Symmetry code: (i) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds