Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title heteronuclear ZnII–PrIII complex (systematic name: {6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methylidyne)]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}(methanol-1κO)-μ-nitrato-1:2κ2O:O′-dinitrato-1κ4O,O′-praseodymium(III)zinc(II)), [PrZn(C18H18N2O4)(NO3)3(CH4O)], with the hexa­dentate Schiff base compartmental ligand N,N′-bis­(3-methoxy­salicyl­idene)ethyl­enediamine (H2L), the Pr and Zn atoms are triply bridged by two phenolate O atoms provided by the Schiff base ligand and one nitrate. The five-coordinate Zn atom is in a square-pyramidal geometry, with the donor centers of two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The PrIII center has a tenfold coordination environment of O atoms, involving the phenolate O atoms, two meth­oxy O atoms, one methanol O atom, and two O atoms from two nitrates and one from the bridging nitrate. Strong inter­molecular O—H...O and some weak C—H...O inter­actions generate a two-dimensional layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037488/at2355sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037488/at2355Isup2.hkl
Contains datablock I

CCDC reference: 1101519

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.025
  • wR factor = 0.076
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 3.19 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O12 - N5 .. 6.09 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pr1 - O3 .. 5.97 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pr1 - O8 .. 6.75 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pr1 - O9 .. 5.40 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pr1 - O11 .. 5.28 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N5
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Pr1 (3) 3.34 PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 2.12 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d–4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d–4f hetorometallic Schiff base complexes (Sui et al., 2006; Sui et al., 2007), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new ZnII–PrIII complex with salen-type Schiff base N,N'-bis(3-methoxysalicylidene) ethylenediamine (H2L).

Complex (I) crystallizes in the space group P21/n, with zinc and praseodymium triply bridged by two phenolate O atoms provided by a salen-type Schiff base ligand and one nitrate. The inner salen-type cavity is occupied by zinc(II), while praseodymium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand.

The PrIII center has a decacoordination environment of O atoms, involving the phenolate O atoms, two methoxy O atoms, one methanol O atom, two O atoms from two nitrates and one from the bridging nitrate. The five kinds of Pr—O bond distances are significantly different, the longest being the Pr—O(methoxy) separations and the shortest being the Pr—O(phenolate) and Pr—O11(bridging nitrate).

The ZnII is in a square-pyramidal geometry and is five-coordinated by two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The Zn atom is 0.5835 (3)Å above the mean N2O2 plane with an average deviation from the plane of 0.0959 (4) Å, which construct the bottom of square-pyramid. The Zn—O13(bridging nitrate) separation is 2.005 (2)Å and the angles of this Zn—O vector with the Zn—N or Zn—O bonds lie between 103.2 (3)° and 115.6 (3)°, which suggesting that the ZnII is in a slightly distorted square-pyramidal conformation.

Adjacent molecules are held together by strong interactions [O14—H14A··· O13i = 2.689 (3); symmetry codes: (i) 3/2 - x, y - 1/2, 1/2 - z] and weak interactions [C7—H7···O8ii = 3.391 (4) and C5—H5···O3ii = 3.429 (4); symmetry codes:(ii) 1/2 + x, 1/2 - y, 1/2 + z]. These link the molecules into a two-dimensional layer structure (Fig. 2).

Related literature top

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006, 2007).

Experimental top

H2L was prepared by the 2:1 condensation of 3-methoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of zinc(II) acetate dihydrate (0.188 g, 1 mmol) with H2L (0.328 g, 1 mmol) in methanol solution (80 ml) under reflux for 3 h and then for another 3 h after the addition of praseodymium(III) nitrate hexahydrate (0.435 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. Analysis calculated for C19H22N5O14PrZn: C 30.40, H 2.95, N 9.33, Pr 18.77, Zn 8.71%; found: C 30.15, H 2.92, N 9.38, Pr 18.59, Zn 8.66%. IR (KBr, cm-1): 1640(C?N), 1386,1490(nitrate).

Refinement top

The H bound O atom was found from a difference Fourier map and refined freely. The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The methyl group of methanol was constrainted as idealized no-rotating CH3 group.

Structure description top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d–4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d–4f hetorometallic Schiff base complexes (Sui et al., 2006; Sui et al., 2007), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new ZnII–PrIII complex with salen-type Schiff base N,N'-bis(3-methoxysalicylidene) ethylenediamine (H2L).

Complex (I) crystallizes in the space group P21/n, with zinc and praseodymium triply bridged by two phenolate O atoms provided by a salen-type Schiff base ligand and one nitrate. The inner salen-type cavity is occupied by zinc(II), while praseodymium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand.

The PrIII center has a decacoordination environment of O atoms, involving the phenolate O atoms, two methoxy O atoms, one methanol O atom, two O atoms from two nitrates and one from the bridging nitrate. The five kinds of Pr—O bond distances are significantly different, the longest being the Pr—O(methoxy) separations and the shortest being the Pr—O(phenolate) and Pr—O11(bridging nitrate).

The ZnII is in a square-pyramidal geometry and is five-coordinated by two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The Zn atom is 0.5835 (3)Å above the mean N2O2 plane with an average deviation from the plane of 0.0959 (4) Å, which construct the bottom of square-pyramid. The Zn—O13(bridging nitrate) separation is 2.005 (2)Å and the angles of this Zn—O vector with the Zn—N or Zn—O bonds lie between 103.2 (3)° and 115.6 (3)°, which suggesting that the ZnII is in a slightly distorted square-pyramidal conformation.

Adjacent molecules are held together by strong interactions [O14—H14A··· O13i = 2.689 (3); symmetry codes: (i) 3/2 - x, y - 1/2, 1/2 - z] and weak interactions [C7—H7···O8ii = 3.391 (4) and C5—H5···O3ii = 3.429 (4); symmetry codes:(ii) 1/2 + x, 1/2 - y, 1/2 + z]. These link the molecules into a two-dimensional layer structure (Fig. 2).

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006, 2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the c axis; hydrogen bonds are shown as dashed lines.
{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-\1κ4O1,O1',O6,O6':2κ4O1,N,\<i>N',O1')(methanol-1κO)-µ-nitrato-1:2κ2O:O'-\ dinitrato-1κ4O,O'-praseodymium(III)zinc(II) top
Crystal data top
[PrZn(C18H18N2O4)(NO3)3(CH4O)]F(000) = 1488
Mr = 750.70Dx = 1.878 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6083 reflections
a = 9.6011 (4) Åθ = 1.8–28.3°
b = 13.8046 (5) ŵ = 2.79 mm1
c = 20.0375 (7) ÅT = 293 K
β = 91.629 (1)°Block, yellow
V = 2654.68 (17) Å30.30 × 0.22 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
6372 independent reflections
Radiation source: fine-focus sealed tube5465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.488, Tmax = 0.679k = 1818
19675 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.717P]
where P = (Fo2 + 2Fc2)/3
6372 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.74 e Å3
5 restraintsΔρmin = 0.70 e Å3
Crystal data top
[PrZn(C18H18N2O4)(NO3)3(CH4O)]V = 2654.68 (17) Å3
Mr = 750.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6011 (4) ŵ = 2.79 mm1
b = 13.8046 (5) ÅT = 293 K
c = 20.0375 (7) Å0.30 × 0.22 × 0.15 mm
β = 91.629 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
6372 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5465 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.679Rint = 0.020
19675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0255 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.74 e Å3
6372 reflectionsΔρmin = 0.70 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.721733 (14)0.278496 (10)0.113900 (6)0.02796 (6)
Zn10.68898 (3)0.37172 (2)0.273215 (15)0.03249 (8)
O10.82378 (19)0.28226 (13)0.22807 (9)0.0329 (4)
O20.55769 (18)0.32507 (14)0.19980 (9)0.0352 (4)
O30.7364 (2)0.36395 (17)0.00049 (10)0.0464 (5)
O70.4591 (2)0.35441 (16)0.08039 (10)0.0438 (5)
O60.9691 (2)0.18028 (15)0.14816 (10)0.0385 (4)
C10.9349 (3)0.23950 (19)0.25573 (13)0.0302 (5)
O40.9351 (2)0.33213 (17)0.04734 (11)0.0463 (5)
N10.7947 (3)0.35333 (18)0.36133 (12)0.0419 (6)
C110.3434 (3)0.3729 (2)0.25103 (16)0.0411 (7)
N20.5233 (3)0.36915 (18)0.33710 (12)0.0443 (6)
C160.4263 (3)0.35504 (18)0.19526 (15)0.0332 (6)
C60.9764 (3)0.2473 (2)0.32366 (14)0.0387 (6)
C120.2019 (3)0.3977 (2)0.2390 (2)0.0540 (9)
H120.14530.40760.27530.065*
N30.8672 (3)0.3668 (2)0.00158 (14)0.0494 (6)
C21.0167 (3)0.1826 (2)0.21401 (14)0.0354 (6)
C150.3670 (3)0.3692 (2)0.13133 (16)0.0385 (6)
C140.2281 (3)0.3947 (2)0.12128 (19)0.0496 (8)
H140.19060.40310.07840.060*
C51.0960 (3)0.1962 (3)0.34674 (17)0.0506 (8)
H51.12320.20030.39160.061*
C31.1330 (3)0.1341 (2)0.23812 (18)0.0473 (7)
H31.18530.09650.20960.057*
C70.9014 (3)0.3013 (2)0.37299 (14)0.0426 (7)
H70.93430.29750.41700.051*
C90.5654 (4)0.3618 (3)0.40742 (15)0.0550 (9)
H9A0.55850.29510.42210.066*
H9B0.50430.40090.43420.066*
C100.3950 (3)0.3688 (2)0.31916 (17)0.0469 (8)
H100.32980.36560.35250.056*
O50.9252 (4)0.4006 (3)0.04924 (16)0.1051 (13)
C80.7151 (4)0.3971 (3)0.41655 (15)0.0543 (9)
H8A0.71880.46720.41430.065*
H8B0.75370.37660.45950.065*
C130.1462 (3)0.4075 (2)0.1768 (2)0.0565 (9)
H130.05230.42290.17090.068*
O140.6428 (2)0.11820 (14)0.16097 (11)0.0407 (5)
O80.5706 (2)0.18210 (16)0.02343 (10)0.0444 (5)
O110.7639 (2)0.45080 (15)0.13810 (10)0.0462 (5)
O90.7876 (2)0.14450 (16)0.02637 (11)0.0469 (5)
N40.6692 (3)0.13211 (18)0.00000 (12)0.0433 (6)
C181.0643 (4)0.1419 (3)0.10131 (17)0.0534 (8)
H18A1.15290.17360.10700.080*
H18B1.02840.15270.05670.080*
H18C1.07560.07360.10880.080*
C170.4082 (4)0.3800 (3)0.01438 (18)0.0603 (9)
H17A0.33630.33550.00040.090*
H17B0.48330.37700.01620.090*
H17C0.37110.44460.01490.090*
C41.1719 (4)0.1414 (3)0.30528 (19)0.0563 (9)
H41.25020.10860.32170.068*
O130.7476 (2)0.50348 (14)0.24262 (10)0.0397 (4)
N50.7784 (3)0.51487 (19)0.18159 (13)0.0450 (6)
O100.6494 (3)0.0758 (2)0.04565 (13)0.0748 (8)
O120.8398 (4)0.6104 (2)0.16159 (19)0.0994 (11)
C190.5002 (4)0.0896 (3)0.1617 (2)0.0641 (10)
H19A0.47150.08420.20710.096*
H19B0.48910.02810.13980.096*
H19C0.44380.13720.13880.096*
H14A0.695 (3)0.085 (2)0.1890 (14)0.049 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.03016 (9)0.03434 (9)0.01918 (8)0.00085 (5)0.00257 (6)0.00135 (5)
Zn10.03917 (17)0.03690 (16)0.02147 (15)0.00117 (12)0.00195 (13)0.00117 (12)
O10.0310 (9)0.0455 (10)0.0218 (9)0.0064 (7)0.0045 (8)0.0012 (7)
O20.0279 (9)0.0467 (11)0.0309 (10)0.0051 (8)0.0010 (8)0.0056 (8)
O30.0436 (12)0.0658 (14)0.0295 (10)0.0013 (10)0.0048 (9)0.0085 (10)
O70.0347 (10)0.0606 (13)0.0355 (11)0.0099 (9)0.0079 (9)0.0066 (10)
O60.0360 (10)0.0503 (11)0.0289 (10)0.0089 (9)0.0044 (8)0.0049 (8)
C10.0300 (12)0.0358 (13)0.0243 (12)0.0039 (10)0.0071 (10)0.0061 (10)
O40.0344 (10)0.0598 (13)0.0446 (12)0.0017 (9)0.0003 (9)0.0093 (11)
N10.0589 (16)0.0453 (13)0.0214 (11)0.0059 (11)0.0011 (11)0.0020 (10)
C110.0375 (15)0.0331 (13)0.0535 (18)0.0023 (11)0.0161 (14)0.0038 (12)
N20.0562 (16)0.0452 (13)0.0324 (12)0.0001 (11)0.0155 (12)0.0006 (10)
C160.0261 (12)0.0308 (12)0.0430 (15)0.0012 (9)0.0031 (11)0.0057 (11)
C60.0377 (15)0.0491 (15)0.0288 (14)0.0065 (12)0.0105 (12)0.0100 (12)
C120.0365 (16)0.0433 (16)0.083 (3)0.0003 (13)0.0257 (18)0.0069 (17)
N30.0529 (16)0.0583 (16)0.0375 (14)0.0004 (13)0.0097 (13)0.0086 (12)
C20.0329 (13)0.0372 (13)0.0356 (14)0.0009 (11)0.0058 (11)0.0040 (11)
C150.0280 (13)0.0370 (14)0.0502 (18)0.0007 (10)0.0025 (12)0.0085 (12)
C140.0306 (15)0.0485 (17)0.069 (2)0.0031 (12)0.0097 (15)0.0067 (15)
C50.0479 (18)0.065 (2)0.0376 (17)0.0001 (16)0.0171 (15)0.0134 (16)
C30.0382 (15)0.0488 (17)0.054 (2)0.0104 (13)0.0084 (14)0.0078 (15)
C70.0538 (18)0.0525 (16)0.0208 (13)0.0126 (14)0.0123 (13)0.0044 (12)
C90.078 (2)0.0580 (19)0.0297 (15)0.0055 (17)0.0211 (16)0.0010 (14)
C100.0505 (18)0.0418 (15)0.0497 (18)0.0006 (13)0.0237 (15)0.0034 (13)
O50.088 (2)0.159 (3)0.070 (2)0.005 (2)0.0345 (18)0.060 (2)
C80.089 (3)0.0498 (17)0.0248 (14)0.0031 (17)0.0052 (16)0.0079 (13)
C130.0278 (14)0.0485 (18)0.093 (3)0.0055 (12)0.0044 (17)0.0041 (18)
O140.0426 (11)0.0401 (10)0.0391 (11)0.0037 (9)0.0017 (9)0.0098 (9)
O80.0465 (12)0.0521 (12)0.0339 (11)0.0026 (10)0.0125 (9)0.0035 (10)
O110.0671 (14)0.0404 (10)0.0311 (9)0.0039 (10)0.0038 (10)0.0018 (7)
O90.0455 (12)0.0539 (12)0.0410 (12)0.0031 (9)0.0027 (10)0.0154 (9)
N40.0611 (16)0.0402 (13)0.0282 (12)0.0015 (11)0.0069 (12)0.0022 (10)
C180.0475 (18)0.069 (2)0.0438 (18)0.0174 (16)0.0048 (15)0.0088 (16)
C170.057 (2)0.080 (3)0.0426 (18)0.0153 (18)0.0166 (16)0.0036 (18)
C40.0482 (18)0.067 (2)0.052 (2)0.0128 (16)0.0194 (16)0.0164 (17)
O130.0536 (12)0.0339 (9)0.0319 (8)0.0046 (8)0.0031 (9)0.0028 (7)
N50.0571 (15)0.0421 (12)0.0360 (10)0.0030 (11)0.0036 (12)0.0023 (9)
O100.100 (2)0.0690 (17)0.0543 (16)0.0012 (15)0.0202 (15)0.0343 (14)
O120.135 (3)0.0654 (18)0.099 (3)0.0109 (19)0.030 (2)0.0017 (18)
C190.051 (2)0.073 (2)0.069 (2)0.0208 (18)0.0020 (18)0.015 (2)
Geometric parameters (Å, º) top
Pr1—O12.4634 (19)C12—H120.9300
Pr1—O22.4517 (17)N3—O51.212 (4)
Pr1—O32.568 (2)C2—C31.378 (4)
Pr1—O42.584 (2)C15—C141.389 (4)
Pr1—O62.8027 (19)C14—C131.391 (5)
Pr1—O72.7945 (19)C14—H140.9300
Pr1—O82.648 (2)C5—C41.351 (5)
Pr1—O92.638 (2)C5—H50.9300
Pr1—O112.459 (2)C3—C41.390 (5)
Pr1—O142.5302 (19)C3—H30.9300
Zn1—O12.0212 (18)C7—H70.9300
Zn1—O22.0155 (19)C9—C81.523 (5)
Zn1—O132.005 (2)C9—H9A0.9700
Zn1—N12.027 (3)C9—H9B0.9700
Zn1—N22.070 (2)C10—H100.9300
O1—C11.327 (3)C8—H8A0.9700
O2—C161.328 (3)C8—H8B0.9700
O3—N31.259 (3)C13—H130.9300
O7—C151.385 (3)O14—C191.425 (4)
O7—C171.441 (4)O14—H14A0.875 (18)
O6—C21.384 (3)O8—N41.272 (3)
O6—C181.431 (4)O11—N51.247 (3)
C1—C21.404 (4)O9—N41.252 (3)
C1—C61.411 (4)N4—O101.211 (3)
O4—N31.256 (3)C18—H18A0.9600
N1—C71.268 (4)C18—H18B0.9600
N1—C81.490 (4)C18—H18C0.9600
C11—C161.412 (4)C17—H17A0.9600
C11—C121.416 (4)C17—H17B0.9600
C11—C101.440 (5)C17—H17C0.9600
N2—C101.273 (4)C4—H40.9300
N2—C91.458 (4)O13—N51.276 (3)
C16—C151.401 (4)N5—O121.503 (4)
C6—C51.415 (4)C19—H19A0.9600
C6—C71.446 (5)C19—H19B0.9600
C12—C131.350 (5)C19—H19C0.9600
O2—Pr1—O1173.34 (7)O2—C16—C11123.8 (3)
O2—Pr1—O165.73 (6)C15—C16—C11118.4 (3)
O11—Pr1—O174.79 (7)C1—C6—C5118.8 (3)
O2—Pr1—O1476.25 (7)C1—C6—C7124.5 (3)
O11—Pr1—O14145.28 (7)C5—C6—C7116.7 (3)
O1—Pr1—O1477.75 (7)C13—C12—C11122.3 (3)
O2—Pr1—O3123.59 (7)C13—C12—H12118.9
O11—Pr1—O373.58 (7)C11—C12—H12118.9
O1—Pr1—O3141.43 (7)O5—N3—O4121.5 (3)
O14—Pr1—O3139.13 (7)O5—N3—O3121.3 (3)
O2—Pr1—O4145.25 (7)O4—N3—O3117.3 (2)
O11—Pr1—O472.31 (7)C3—C2—O6124.4 (3)
O1—Pr1—O499.97 (7)C3—C2—C1121.6 (3)
O14—Pr1—O4133.89 (7)O6—C2—C1113.9 (2)
O3—Pr1—O449.27 (7)O7—C15—C14124.2 (3)
O2—Pr1—O9145.23 (7)O7—C15—C16113.7 (2)
O11—Pr1—O9140.19 (7)C14—C15—C16122.1 (3)
O1—Pr1—O9122.39 (6)C15—C14—C13118.6 (3)
O14—Pr1—O973.42 (7)C15—C14—H14120.7
O3—Pr1—O973.35 (7)C13—C14—H14120.7
O4—Pr1—O969.47 (7)C4—C5—C6121.6 (3)
O2—Pr1—O8105.18 (6)C4—C5—H5119.2
O11—Pr1—O8134.83 (7)C6—C5—H5119.2
O1—Pr1—O8147.35 (7)C2—C3—C4119.8 (3)
O14—Pr1—O869.60 (7)C2—C3—H3120.1
O3—Pr1—O870.59 (7)C4—C3—H3120.1
O4—Pr1—O8102.57 (7)N1—C7—C6125.6 (3)
O9—Pr1—O847.90 (7)N1—C7—H7117.2
O2—Pr1—O758.48 (6)C6—C7—H7117.2
O11—Pr1—O780.04 (7)N2—C9—C8109.2 (2)
O1—Pr1—O7123.20 (6)N2—C9—H9A109.8
O14—Pr1—O798.03 (7)C8—C9—H9A109.8
O3—Pr1—O771.74 (7)N2—C9—H9B109.8
O4—Pr1—O7119.44 (7)C8—C9—H9B109.8
O9—Pr1—O7109.56 (6)H9A—C9—H9B108.3
O8—Pr1—O763.31 (6)N2—C10—C11124.8 (3)
O2—Pr1—O6120.77 (6)N2—C10—H10117.6
O11—Pr1—O6106.62 (7)C11—C10—H10117.6
O1—Pr1—O658.06 (6)N1—C8—C9106.4 (3)
O14—Pr1—O675.31 (6)N1—C8—H8A110.4
O3—Pr1—O6111.82 (6)C9—C8—H8A110.4
O4—Pr1—O665.58 (6)N1—C8—H8B110.4
O9—Pr1—O666.82 (6)C9—C8—H8B110.4
O8—Pr1—O6111.63 (6)H8A—C8—H8B108.6
O7—Pr1—O6173.01 (6)C12—C13—C14120.5 (3)
O13—Zn1—O2104.00 (8)C12—C13—H13119.7
O13—Zn1—O1103.21 (8)C14—C13—H13119.7
O2—Zn1—O182.72 (7)C19—O14—Pr1123.0 (2)
O13—Zn1—N1104.00 (9)C19—O14—H14A113 (2)
O2—Zn1—N1151.99 (9)Pr1—O14—H14A122 (2)
O1—Zn1—N190.13 (9)N4—O8—Pr197.25 (16)
O13—Zn1—N2115.59 (9)N5—O11—Pr1147.00 (18)
O2—Zn1—N288.29 (9)N4—O9—Pr198.31 (16)
O1—Zn1—N2141.20 (9)O10—N4—O9121.8 (3)
N1—Zn1—N280.43 (11)O10—N4—O8121.7 (3)
C1—O1—Zn1127.04 (17)O9—N4—O8116.5 (2)
C1—O1—Pr1132.26 (16)O6—C18—H18A109.5
Zn1—O1—Pr1100.70 (7)O6—C18—H18B109.5
C16—O2—Zn1121.57 (16)H18A—C18—H18B109.5
C16—O2—Pr1131.41 (17)O6—C18—H18C109.5
Zn1—O2—Pr1101.26 (7)H18A—C18—H18C109.5
N3—O3—Pr197.09 (17)H18B—C18—H18C109.5
C15—O7—C17115.7 (2)O7—C17—H17A109.5
C15—O7—Pr1117.96 (17)O7—C17—H17B109.5
C17—O7—Pr1126.35 (18)H17A—C17—H17B109.5
C2—O6—C18115.7 (2)O7—C17—H17C109.5
C2—O6—Pr1118.49 (15)H17A—C17—H17C109.5
C18—O6—Pr1124.85 (18)H17B—C17—H17C109.5
O1—C1—C2117.2 (2)C5—C4—C3120.1 (3)
O1—C1—C6124.8 (3)C5—C4—H4120.0
C2—C1—C6118.0 (2)C3—C4—H4120.0
N3—O4—Pr196.37 (16)N5—O13—Zn1118.65 (17)
C7—N1—C8121.5 (3)O11—N5—O13123.9 (2)
C7—N1—Zn1127.8 (2)O11—N5—O12118.2 (2)
C8—N1—Zn1110.0 (2)O13—N5—O12117.8 (3)
C16—C11—C12117.9 (3)O14—C19—H19A109.5
C16—C11—C10123.9 (3)O14—C19—H19B109.5
C12—C11—C10118.2 (3)H19A—C19—H19B109.5
C10—N2—C9120.8 (3)O14—C19—H19C109.5
C10—N2—Zn1125.4 (2)H19A—C19—H19C109.5
C9—N2—Zn1113.7 (2)H19B—C19—H19C109.5
O2—C16—C15117.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O90.962.383.015 (4)124
C17—H17B···O30.962.453.178 (4)133
C5—H5···O3i0.932.573.429 (4)154
C7—H7···O8i0.932.493.391 (4)165
O14—H14A···O13ii0.88 (2)1.84 (2)2.689 (3)162 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PrZn(C18H18N2O4)(NO3)3(CH4O)]
Mr750.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6011 (4), 13.8046 (5), 20.0375 (7)
β (°) 91.629 (1)
V3)2654.68 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.30 × 0.22 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.488, 0.679
No. of measured, independent and
observed [I > 2σ(I)] reflections
19675, 6372, 5465
Rint0.020
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.076, 1.00
No. of reflections6372
No. of parameters367
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.70

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), APEX2 and publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Pr1—O12.4634 (19)Pr1—O112.459 (2)
Pr1—O22.4517 (17)Pr1—O142.5302 (19)
Pr1—O32.568 (2)Zn1—O12.0212 (18)
Pr1—O42.584 (2)Zn1—O22.0155 (19)
Pr1—O62.8027 (19)Zn1—O132.005 (2)
Pr1—O72.7945 (19)Zn1—N12.027 (3)
Pr1—O82.648 (2)Zn1—N22.070 (2)
Pr1—O92.638 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O90.962.383.015 (4)123.5
C17—H17B···O30.962.453.178 (4)132.6
C5—H5···O3i0.932.573.429 (4)154.1
C7—H7···O8i0.932.493.391 (4)164.5
O14—H14A···O13ii0.875 (18)1.84 (2)2.689 (3)162 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds