Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Cu(ClO4)(C3H4N2)4]ClO4·2C2H7N2, consists of a cationic tetra­kis(1H-imidazole)perchloratocopper(II) complex, two dimethyl­amine solvent mol­ecules and one perchlorate counter-anion. The coordination geometry of the metal atom is tetra­gonal-pyramidal, with four imidazole mol­ecules in the basal plane and a perchlorate anion at the apex. The complex cations act as multiple connectors and self-assemble into a one-dimensional hydrogen-bonded ribbon, which is further hydrogen bonded with the perchlorate anion and solvent dimethyl­amine to form a two-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037440/at2354sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037440/at2354Isup2.hkl
Contains datablock I

CCDC reference: 660063

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.039
  • wR factor = 0.119
  • Data-to-parameter ratio = 19.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT165_ALERT_3_C Nr. of Status R Flagged Non-Hydrogen Atoms ..... 2 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N9 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N10 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl2 PLAT751_ALERT_4_C Bond Calc 1.47252, Rep 1.472(4) ...... Senseless su N10 -C16 1.555 1.555 PLAT751_ALERT_4_C Bond Calc 1.47931, Rep 1.480(4) ...... Senseless su N10 -C15 1.555 1.555 PLAT751_ALERT_4_C Bond Calc 1.45362, Rep 1.454(4) ...... Senseless su N9 -C13 1.555 1.555 PLAT751_ALERT_4_C Bond Calc 1.47444, Rep 1.475(4) ...... Senseless su N9 -C14 1.555 1.555 PLAT752_ALERT_4_C Angle Calc 113.44, Rep 113.4(2) ...... Senseless su C16 -N10 -C15 1.555 1.555 1.555 PLAT752_ALERT_4_C Angle Calc 113.75, Rep 113.7(3) ...... Senseless su C13 -N9 -C14 1.555 1.555 1.555 PLAT757_ALERT_4_C D...A Calc 2.69290, Rep 2.693(3) ...... Senseless su N9 -O5 1.555 1.545 PLAT757_ALERT_4_C D...A Calc 2.71724, Rep 2.717(3) ...... Senseless su N9 -O6 1.555 3.566 PLAT757_ALERT_4_C D...A Calc 2.74923, Rep 2.749(2) ...... Senseless su N10 -O3 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 C2 H7 N
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.13
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 13 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In decades, hydrogen bonding with directionality and strength has been widely exploited by crystal engineers to control and tune structure topologies. For example, the carboxylic acid moiety as a graceful supramolecular synthon can be hydrogen bonded into not only discrete aggregates and one-dimensional polymers but also two-dimensional and three-dimensional networks; and calix-C-methylresorcin-[4]arenes self-assembled with water molecules held together by hydrogen bonds into a spheroid with a very large enclosed cavity of 1375 Å3 (Moulton & Zaworotko, 2001). Of currently attractive are coordination complexes encoding multiple hydrogen-bonding acceptors and donors embedded in ligands because these supramolecular synthons incorporating stereostructure and H-bond sites can further construct higher-ordered aggregates through H-bond recognitions (Lavalette et al., 2003; Głowiak & Wnęk, 1985). We communicate herein the synthesis and hydrogen-bonded two-dimensional planar sheet constructed by novel one-dimensional hydrogen-bonded ribbons of the title compound, [Cu(C3H4N2)4(ClO4)]+.(ClO4)-.2(C2H7N), (I).

In (I), the coordination enviroment of Cu(II) ion is axially elongated tetragonal-pyramidal (Fig. 1 and Table 1). The Cu(II) atom is Penta-coordinated by N4O with four terminal imidazole molecules arranged almost perpendicular to the Cu—N4 plane in base [Cu—N, from 2.0104 (19) to 2.0347 (19) Å] and a terminal perchlorate anion at apex [Cu—O, 2.2796 (19) Å]. As clearly shown in Fig. 2, the cation complex is an excellent supramolecular synthon. The four terminal imidazole ligands acting as hydrogen-bonding donors bind two lattice perchlorates and two coordination perchlorates, respectively, while, with the free coordination oxygen O4 as hydrogen-bonding acceptors, the coordination perchlorate anion also connect with two imidazole ligands from different complex ions (Table 2). Thus, the cation complex is a notable six-connector, and self-assembles into a novel one-dimensional hydrogen-bonded ribbon by paired N—H···O hydrogen bonds. With lattice perchlorate being captured at one corner by other paired N—H···O hydrogen bonds, the novel one-dimensional hydrogen-bonded ribbons finally extend into a hydrogen-bonded two-dimensional planar sheet in the direction parallel to the (1 0 1) plane (Fig. 3), and pack up in crystals (Fig. 4). Remarkably, through H-bond interactions, dimethylamine molecules which have been determined by single-crystal and elemental analysis inhabit in cavities of the one-dimensional hydrogen-bonded ribbons or ride at the lattice perchlorate. Perhaps, the dimethylamine derived from the decomposition of N,N-dimethylformamide in the reaction system (Xu et al., 2004).

Related literature top

For related literature, see: Głowiak & Wnęk (1985); Lavalette et al. (2003); Moulton & Zaworotko (2001); Sengupta et al. (2001); Xu et al. (2004).

Experimental top

A solution of imidazole (0.0272 g, 0.4 mmol) and N,N-dimethylformamide (5 ml) was mixed with a solution of Cu(ClO4)2.6H2O (0.0371 g, 0.1 mmol) in methanol (15 ml) with sharp stir. Then the mixture was heated for half an hour in water bath at 333 K, which led to a green solution. With the solution slowly evaporating in room temperature for three week, green block crystal appeared. Filtrated, washed with a few drops of methanol and dried naturally, pure title compound of 0.047 g was obtained (yield 75%); Analysis calculated for C16H30Cl2CuN10O8: C 30.75, H 4.84, N 22.41%. Found: C 30.82, H 4.79, N 22.45%.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.95–0.98 Å, N—H = 0.88–0.90 Å and with Uiso = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.

Structure description top

In decades, hydrogen bonding with directionality and strength has been widely exploited by crystal engineers to control and tune structure topologies. For example, the carboxylic acid moiety as a graceful supramolecular synthon can be hydrogen bonded into not only discrete aggregates and one-dimensional polymers but also two-dimensional and three-dimensional networks; and calix-C-methylresorcin-[4]arenes self-assembled with water molecules held together by hydrogen bonds into a spheroid with a very large enclosed cavity of 1375 Å3 (Moulton & Zaworotko, 2001). Of currently attractive are coordination complexes encoding multiple hydrogen-bonding acceptors and donors embedded in ligands because these supramolecular synthons incorporating stereostructure and H-bond sites can further construct higher-ordered aggregates through H-bond recognitions (Lavalette et al., 2003; Głowiak & Wnęk, 1985). We communicate herein the synthesis and hydrogen-bonded two-dimensional planar sheet constructed by novel one-dimensional hydrogen-bonded ribbons of the title compound, [Cu(C3H4N2)4(ClO4)]+.(ClO4)-.2(C2H7N), (I).

In (I), the coordination enviroment of Cu(II) ion is axially elongated tetragonal-pyramidal (Fig. 1 and Table 1). The Cu(II) atom is Penta-coordinated by N4O with four terminal imidazole molecules arranged almost perpendicular to the Cu—N4 plane in base [Cu—N, from 2.0104 (19) to 2.0347 (19) Å] and a terminal perchlorate anion at apex [Cu—O, 2.2796 (19) Å]. As clearly shown in Fig. 2, the cation complex is an excellent supramolecular synthon. The four terminal imidazole ligands acting as hydrogen-bonding donors bind two lattice perchlorates and two coordination perchlorates, respectively, while, with the free coordination oxygen O4 as hydrogen-bonding acceptors, the coordination perchlorate anion also connect with two imidazole ligands from different complex ions (Table 2). Thus, the cation complex is a notable six-connector, and self-assembles into a novel one-dimensional hydrogen-bonded ribbon by paired N—H···O hydrogen bonds. With lattice perchlorate being captured at one corner by other paired N—H···O hydrogen bonds, the novel one-dimensional hydrogen-bonded ribbons finally extend into a hydrogen-bonded two-dimensional planar sheet in the direction parallel to the (1 0 1) plane (Fig. 3), and pack up in crystals (Fig. 4). Remarkably, through H-bond interactions, dimethylamine molecules which have been determined by single-crystal and elemental analysis inhabit in cavities of the one-dimensional hydrogen-bonded ribbons or ride at the lattice perchlorate. Perhaps, the dimethylamine derived from the decomposition of N,N-dimethylformamide in the reaction system (Xu et al., 2004).

For related literature, see: Głowiak & Wnęk (1985); Lavalette et al. (2003); Moulton & Zaworotko (2001); Sengupta et al. (2001); Xu et al. (2004).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SHELXTL (Sheldrick, 1997b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. An ORTEP representation of the asymmetry unit in the title compound (I), showing tetragonal-pyramidal coordination geometry around metal center Cu(II). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the self-assembly of complex (I) into a novel one-dimensional hydrogen-bonded ribbon by paired N—H···O hydrogen bonds.
[Figure 3] Fig. 3. View of a hydrogen-bonded two-dimensional planar sheet extending in the direction parallel to the (1 0 1) plane.
[Figure 4] Fig. 4. Packing diagram of the title compound (I), showing guest dimethylamine molecules inhabited in the cavities (partial hydrogen atoms have been omitted for clarity).
Tetrakis(1H-imidazole-κN3)(perchlorato-κO)copper(II) perchlorate dimethylamine disolvate top
Crystal data top
[Cu(ClO4)(C3H4N2)4]ClO4·2C2H7N2F(000) = 1292
Mr = 624.94Dx = 1.606 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6261 reflections
a = 16.5302 (17) Åθ = 2.5–27.9°
b = 9.2777 (10) ŵ = 1.11 mm1
c = 20.7248 (15) ÅT = 273 K
β = 125.580 (5)°Block, green
V = 2585.0 (5) Å30.32 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6240 independent reflections
Radiation source: fine-focus sealed tube4989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.712, Tmax = 0.765k = 1212
21182 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0615P)2 + 1.869P]
where P = (Fo2 + 2Fc2)/3
6240 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Cu(ClO4)(C3H4N2)4]ClO4·2C2H7N2V = 2585.0 (5) Å3
Mr = 624.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5302 (17) ŵ = 1.11 mm1
b = 9.2777 (10) ÅT = 273 K
c = 20.7248 (15) Å0.32 × 0.29 × 0.25 mm
β = 125.580 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6240 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4989 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.765Rint = 0.030
21182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 0.66 e Å3
6240 reflectionsΔρmin = 0.87 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28355 (2)0.24588 (3)0.777041 (17)0.02098 (10)
Cl10.52647 (4)0.21986 (6)0.92904 (3)0.02249 (13)
O10.45053 (13)0.28852 (19)0.85304 (10)0.0293 (4)
N10.25032 (16)0.0965 (2)0.82932 (12)0.0243 (4)
C10.1562 (2)0.0424 (3)0.79480 (16)0.0311 (5)
H1A0.09970.06470.74290.037*
Cl20.04412 (4)0.77614 (6)0.43718 (3)0.02472 (14)
O20.51351 (15)0.2707 (2)0.99015 (11)0.0388 (5)
N20.25177 (17)0.0490 (2)0.91358 (13)0.0311 (5)
H2B0.27360.09880.95700.037*
C20.1568 (2)0.0483 (3)0.84686 (16)0.0318 (6)
H2C0.10190.10060.83820.038*
O30.51743 (15)0.06216 (19)0.92169 (12)0.0402 (5)
N30.25347 (16)0.3963 (2)0.83014 (12)0.0244 (4)
C30.30678 (19)0.0401 (3)0.90176 (15)0.0269 (5)
H3B0.37560.05950.93960.032*
O40.62696 (14)0.26129 (18)0.95327 (11)0.0283 (4)
N40.26774 (17)0.5529 (2)0.91551 (13)0.0311 (5)
H4B0.29470.60630.95840.037*
C40.3164 (2)0.4596 (3)0.89952 (15)0.0273 (5)
H4C0.38590.44170.93320.033*
O50.01465 (19)0.9259 (2)0.43397 (19)0.0682 (8)
N50.27036 (15)0.3940 (2)0.70031 (11)0.0225 (4)
C50.1696 (2)0.5503 (3)0.85361 (16)0.0343 (6)
H5B0.11760.60560.84820.041*
O60.01920 (16)0.6908 (3)0.48374 (13)0.0492 (6)
N60.2068 (2)0.5493 (2)0.60361 (13)0.0435 (6)
H6B0.16270.60450.56380.052*
C60.1612 (2)0.4522 (3)0.80090 (16)0.0321 (6)
H6C0.10100.42660.75180.039*
O70.00792 (18)0.7188 (3)0.35769 (13)0.0571 (7)
N70.29348 (15)0.0923 (2)0.71186 (12)0.0235 (4)
C70.1884 (2)0.4609 (3)0.64449 (15)0.0326 (6)
H7B0.12510.44810.63470.039*
O80.15263 (14)0.7693 (2)0.47831 (12)0.0352 (4)
N80.25757 (17)0.0565 (2)0.61590 (12)0.0316 (5)
H8B0.22300.11040.57310.038*
C80.3048 (3)0.5398 (3)0.63370 (17)0.0425 (7)
H8C0.33880.59060.61640.051*
C90.3441 (2)0.4422 (3)0.69392 (16)0.0309 (5)
H9A0.41170.41230.72630.037*
C100.38020 (19)0.0519 (3)0.72164 (15)0.0282 (5)
H10A0.44510.08350.76310.034*
C110.3582 (2)0.0407 (3)0.66236 (16)0.0311 (5)
H11A0.40400.08530.65500.037*
C120.21965 (11)0.02468 (15)0.64659 (9)0.0289 (5)
H12A0.15100.03250.62510.035*
N100.42910 (11)0.20296 (15)0.86560 (9)0.0321 (5)
H10B0.44220.13640.90210.038*
N90.06492 (11)0.20562 (15)0.44547 (9)0.0434 (6)
H9B0.04670.15220.47010.052*
C130.1675 (3)0.2473 (4)0.4811 (3)0.0596 (10)
H13A0.21020.20750.53480.089*
H13B0.17270.35260.48350.089*
H13C0.18860.20980.44880.089*
C140.0058 (4)0.2612 (4)0.3643 (3)0.0669 (11)
H14A0.07330.22990.34410.100*
H14B0.01200.22390.32980.100*
H14C0.00310.36680.36500.100*
C150.3270 (3)0.2450 (3)0.79940 (18)0.0380 (7)
H15A0.27880.18940.80230.057*
H15B0.31740.34810.80320.057*
H15C0.31710.22550.74880.057*
C160.5070 (3)0.2820 (4)0.8665 (2)0.0578 (9)
H16A0.57260.24990.91170.087*
H16B0.50040.26320.81710.087*
H16C0.49970.38560.87120.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03030 (18)0.01577 (14)0.02325 (16)0.00019 (11)0.01922 (14)0.00038 (10)
Cl10.0205 (3)0.0258 (3)0.0189 (3)0.0009 (2)0.0102 (2)0.0005 (2)
O10.0261 (10)0.0329 (9)0.0209 (8)0.0013 (7)0.0091 (8)0.0040 (7)
N10.0319 (11)0.0206 (9)0.0251 (10)0.0007 (8)0.0191 (9)0.0013 (8)
C10.0279 (14)0.0321 (13)0.0299 (13)0.0001 (10)0.0148 (11)0.0064 (11)
Cl20.0223 (3)0.0272 (3)0.0228 (3)0.0005 (2)0.0120 (2)0.0007 (2)
O20.0337 (11)0.0634 (14)0.0236 (9)0.0114 (9)0.0192 (9)0.0030 (8)
N20.0388 (13)0.0302 (11)0.0302 (11)0.0049 (9)0.0234 (10)0.0096 (9)
C20.0299 (14)0.0314 (13)0.0374 (14)0.0029 (11)0.0216 (12)0.0051 (11)
O30.0384 (12)0.0222 (9)0.0433 (11)0.0062 (8)0.0143 (10)0.0013 (8)
N30.0310 (11)0.0200 (9)0.0267 (10)0.0010 (8)0.0194 (9)0.0029 (8)
C30.0291 (13)0.0264 (12)0.0272 (12)0.0006 (10)0.0176 (11)0.0005 (10)
O40.0224 (9)0.0373 (10)0.0257 (9)0.0079 (7)0.0143 (8)0.0061 (7)
N40.0393 (13)0.0277 (11)0.0267 (10)0.0026 (9)0.0193 (10)0.0092 (9)
C40.0301 (13)0.0245 (11)0.0268 (12)0.0008 (10)0.0162 (11)0.0017 (9)
O50.0570 (16)0.0278 (11)0.129 (2)0.0085 (10)0.0591 (18)0.0038 (13)
N50.0247 (11)0.0199 (9)0.0231 (9)0.0013 (8)0.0140 (9)0.0025 (7)
C50.0332 (15)0.0359 (14)0.0361 (14)0.0015 (11)0.0215 (13)0.0085 (12)
O60.0421 (13)0.0645 (14)0.0445 (12)0.0002 (11)0.0272 (11)0.0217 (11)
N60.0555 (17)0.0292 (12)0.0263 (11)0.0066 (11)0.0126 (12)0.0112 (9)
C60.0294 (14)0.0361 (14)0.0311 (13)0.0024 (11)0.0178 (12)0.0101 (11)
O70.0407 (14)0.0908 (19)0.0264 (11)0.0196 (12)0.0119 (10)0.0220 (11)
N70.0296 (11)0.0200 (9)0.0246 (10)0.0004 (8)0.0178 (9)0.0011 (8)
C70.0286 (14)0.0286 (12)0.0291 (13)0.0034 (10)0.0102 (11)0.0003 (10)
O80.0199 (10)0.0517 (12)0.0274 (9)0.0010 (8)0.0099 (8)0.0011 (8)
N80.0403 (13)0.0263 (11)0.0245 (10)0.0054 (9)0.0168 (10)0.0074 (8)
C80.064 (2)0.0360 (15)0.0364 (15)0.0126 (14)0.0343 (16)0.0014 (12)
C90.0320 (14)0.0340 (13)0.0323 (13)0.0027 (11)0.0219 (12)0.0036 (11)
C100.0285 (13)0.0300 (12)0.0281 (12)0.0045 (10)0.0177 (11)0.0077 (10)
C110.0334 (14)0.0318 (13)0.0319 (13)0.0001 (11)0.0212 (12)0.0067 (11)
C120.0304 (14)0.0259 (12)0.0280 (12)0.0013 (10)0.0157 (11)0.0009 (10)
N100.0443 (14)0.0265 (10)0.0293 (11)0.0029 (10)0.0237 (11)0.0048 (9)
N90.0523 (17)0.0352 (12)0.0491 (15)0.0021 (12)0.0331 (14)0.0038 (11)
C130.064 (3)0.054 (2)0.064 (3)0.0127 (17)0.040 (2)0.0039 (17)
C140.073 (3)0.071 (3)0.057 (2)0.008 (2)0.037 (2)0.0065 (18)
C150.0472 (19)0.0309 (14)0.0317 (14)0.0038 (12)0.0206 (14)0.0025 (11)
C160.061 (2)0.064 (2)0.064 (2)0.0081 (18)0.045 (2)0.0023 (18)
Geometric parameters (Å, º) top
Cu1—N32.0104 (19)N6—H6B0.8800
Cu1—N52.0151 (19)C6—H6C0.9500
Cu1—N12.0223 (19)N7—C121.339 (2)
Cu1—N72.0347 (19)N7—C101.378 (3)
Cu1—O12.2796 (19)C7—H7B0.9500
Cl1—O31.4695 (19)N8—C121.352 (3)
Cl1—O11.4702 (18)N8—C111.361 (4)
Cl1—O21.4794 (19)N8—H8B0.8800
Cl1—O41.4794 (18)C8—C91.362 (4)
N1—C31.330 (3)C8—H8C0.9500
N1—C11.375 (3)C9—H9A0.9500
C1—C21.363 (3)C10—C111.363 (3)
C1—H1A0.9500C10—H10A0.9500
Cl2—O71.445 (2)C11—H11A0.9500
Cl2—O51.461 (2)C12—H12A0.9500
Cl2—O81.473 (2)N10—C161.472 (4)
Cl2—O61.480 (2)N10—C151.480 (4)
N2—C31.352 (3)N10—H10B0.9000
N2—C21.360 (4)N9—C131.454 (4)
N2—H2B0.8800N9—C141.475 (4)
C2—H2C0.9500N9—H9B0.8800
N3—C41.324 (3)C13—H13A0.9800
N3—C61.374 (3)C13—H13B0.9800
C3—H3B0.9500C13—H13C0.9800
N4—C41.348 (3)C14—H14A0.9800
N4—C51.362 (4)C14—H14B0.9800
N4—H4B0.8800C14—H14C0.9800
C4—H4C0.9500C15—H15A0.9800
N5—C71.317 (3)C15—H15B0.9800
N5—C91.375 (3)C15—H15C0.9800
C5—C61.365 (3)C16—H16A0.9800
C5—H5B0.9500C16—H16B0.9800
N6—C71.335 (4)C16—H16C0.9800
N6—C81.359 (4)
N3—Cu1—N590.64 (8)C5—C6—H6C125.4
N3—Cu1—N187.23 (8)N3—C6—H6C125.4
N5—Cu1—N1162.13 (9)C12—N7—C10106.26 (17)
N3—Cu1—N7172.14 (8)C12—N7—Cu1128.37 (14)
N5—Cu1—N788.11 (8)C10—N7—Cu1124.88 (16)
N1—Cu1—N791.59 (8)N5—C7—N6110.4 (2)
N3—Cu1—O194.99 (8)N5—C7—H7B124.8
N5—Cu1—O187.62 (7)N6—C7—H7B124.8
N1—Cu1—O1110.24 (8)C12—N8—C11108.51 (19)
N7—Cu1—O192.71 (7)C12—N8—H8B125.7
O3—Cl1—O1110.39 (11)C11—N8—H8B125.7
O3—Cl1—O2110.46 (12)N6—C8—C9105.6 (2)
O1—Cl1—O2108.68 (11)N6—C8—H8C127.2
O3—Cl1—O4108.68 (11)C9—C8—H8C127.2
O1—Cl1—O4109.96 (11)C8—C9—N5109.1 (3)
O2—Cl1—O4108.65 (11)C8—C9—H9A125.4
Cl1—O1—Cu1126.93 (11)N5—C9—H9A125.4
C3—N1—C1106.4 (2)C11—C10—N7109.2 (2)
C3—N1—Cu1130.05 (18)C11—C10—H10A125.4
C1—N1—Cu1123.33 (16)N7—C10—H10A125.4
C2—C1—N1109.2 (2)N8—C11—C10106.3 (2)
C2—C1—H1A125.4N8—C11—H11A126.8
N1—C1—H1A125.4C10—C11—H11A126.8
O7—Cl2—O5109.68 (17)N7—C12—N8109.67 (16)
O7—Cl2—O8111.14 (13)N7—C12—H12A125.2
O5—Cl2—O8109.20 (13)N8—C12—H12A125.2
O7—Cl2—O6109.84 (15)C16—N10—C15113.4 (2)
O5—Cl2—O6109.05 (15)C16—N10—H10B123.4
O8—Cl2—O6107.88 (12)C15—N10—H10B123.2
C3—N2—C2108.2 (2)C13—N9—C14113.7 (3)
C3—N2—H2B125.9C13—N9—H9B123.1
C2—N2—H2B125.9C14—N9—H9B123.1
N2—C2—C1106.3 (2)N9—C13—H13A109.5
N2—C2—H2C126.9N9—C13—H13B109.5
C1—C2—H2C126.9H13A—C13—H13B109.5
C4—N3—C6106.3 (2)N9—C13—H13C109.5
C4—N3—Cu1127.88 (17)H13A—C13—H13C109.5
C6—N3—Cu1125.83 (17)H13B—C13—H13C109.5
N1—C3—N2109.9 (2)N9—C14—H14A109.5
N1—C3—H3B125.0N9—C14—H14B109.5
N2—C3—H3B125.0H14A—C14—H14B109.5
C4—N4—C5108.1 (2)N9—C14—H14C109.5
C4—N4—H4B125.9H14A—C14—H14C109.5
C5—N4—H4B125.9H14B—C14—H14C109.5
N3—C4—N4110.4 (2)N10—C15—H15A109.5
N3—C4—H4C124.8N10—C15—H15B109.5
N4—C4—H4C124.8H15A—C15—H15B109.5
C7—N5—C9106.2 (2)N10—C15—H15C109.5
C7—N5—Cu1126.73 (18)H15A—C15—H15C109.5
C9—N5—Cu1127.08 (17)H15B—C15—H15C109.5
N4—C5—C6106.1 (2)N10—C16—H16A109.5
N4—C5—H5B127.0N10—C16—H16B109.5
C6—C5—H5B127.0H16A—C16—H16B109.5
C7—N6—C8108.7 (2)N10—C16—H16C109.5
C7—N6—H6B125.7H16A—C16—H16C109.5
C8—N6—H6B125.7H16B—C16—H16C109.5
C5—C6—N3109.2 (2)
O3—Cl1—O1—Cu151.84 (16)N1—Cu1—N5—C715.6 (4)
O2—Cl1—O1—Cu169.45 (16)N7—Cu1—N5—C7104.9 (2)
O4—Cl1—O1—Cu1171.74 (11)O1—Cu1—N5—C7162.3 (2)
N3—Cu1—O1—Cl189.35 (14)N3—Cu1—N5—C9114.8 (2)
N5—Cu1—O1—Cl1179.78 (14)N1—Cu1—N5—C9162.2 (2)
N1—Cu1—O1—Cl10.47 (16)N7—Cu1—N5—C972.9 (2)
N7—Cu1—O1—Cl192.23 (14)O1—Cu1—N5—C919.9 (2)
N3—Cu1—N1—C384.1 (2)C4—N4—C5—C60.5 (3)
N5—Cu1—N1—C3167.5 (2)N4—C5—C6—N30.5 (3)
N7—Cu1—N1—C3103.7 (2)C4—N3—C6—C50.2 (3)
O1—Cu1—N1—C310.3 (2)Cu1—N3—C6—C5179.30 (18)
N3—Cu1—N1—C189.9 (2)N5—Cu1—N7—C1284.60 (17)
N5—Cu1—N1—C16.5 (4)N1—Cu1—N7—C1277.53 (18)
N7—Cu1—N1—C182.3 (2)O1—Cu1—N7—C12172.12 (17)
O1—Cu1—N1—C1175.75 (18)N5—Cu1—N7—C1086.23 (19)
C3—N1—C1—C20.7 (3)N1—Cu1—N7—C10111.65 (19)
Cu1—N1—C1—C2175.89 (17)O1—Cu1—N7—C101.30 (19)
C3—N2—C2—C10.2 (3)C9—N5—C7—N60.3 (3)
N1—C1—C2—N20.3 (3)Cu1—N5—C7—N6178.51 (17)
N5—Cu1—N3—C4105.0 (2)C8—N6—C7—N50.1 (3)
N1—Cu1—N3—C492.8 (2)C7—N6—C8—C90.1 (3)
O1—Cu1—N3—C417.3 (2)N6—C8—C9—N50.3 (3)
N5—Cu1—N3—C676.1 (2)C7—N5—C9—C80.4 (3)
N1—Cu1—N3—C686.1 (2)Cu1—N5—C9—C8178.57 (18)
O1—Cu1—N3—C6163.8 (2)C12—N7—C10—C110.3 (3)
C1—N1—C3—N20.8 (3)Cu1—N7—C10—C11172.86 (17)
Cu1—N1—C3—N2175.60 (16)C12—N8—C11—C100.1 (3)
C2—N2—C3—N10.7 (3)N7—C10—C11—N80.3 (3)
C6—N3—C4—N40.1 (3)C10—N7—C12—N80.3 (2)
Cu1—N3—C4—N4178.94 (16)Cu1—N7—C12—N8172.43 (15)
C5—N4—C4—N30.4 (3)C11—N8—C12—N70.1 (2)
N3—Cu1—N5—C767.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O4i0.882.213.013 (3)152
N4—H4B···O4ii0.881.942.808 (3)167
N8—H8B···O8iii0.881.952.828 (3)177
N9—H9B···O5iii0.882.192.693 (3)116
N9—H9B···O6iv0.882.332.717 (3)107
N6—H6B···O60.882.112.924 (3)154
N6—H6B···O80.882.273.001 (3)140
N10—H10B···O30.902.132.749 (2)126
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x, y1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)(C3H4N2)4]ClO4·2C2H7N2
Mr624.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)16.5302 (17), 9.2777 (10), 20.7248 (15)
β (°) 125.580 (5)
V3)2585.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.32 × 0.29 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.712, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
21182, 6240, 4989
Rint0.030
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.07
No. of reflections6240
No. of parameters328
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.87

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXTL (Sheldrick, 1997b), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N32.0104 (19)Cu1—N72.0347 (19)
Cu1—N52.0151 (19)Cu1—O12.2796 (19)
Cu1—N12.0223 (19)
N3—Cu1—N590.64 (8)N1—Cu1—N791.59 (8)
N3—Cu1—N187.23 (8)N3—Cu1—O194.99 (8)
N5—Cu1—N1162.13 (9)N5—Cu1—O187.62 (7)
N3—Cu1—N7172.14 (8)N1—Cu1—O1110.24 (8)
N5—Cu1—N788.11 (8)N7—Cu1—O192.71 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O4i0.882.213.013 (3)151.8
N4—H4B···O4ii0.881.942.808 (3)167.3
N8—H8B···O8iii0.881.952.828 (3)177.0
N9—H9B···O5iii0.882.192.693 (3)116.0
N9—H9B···O6iv0.882.332.717 (3)106.6
N6—H6B···O60.882.112.924 (3)153.8
N6—H6B···O80.882.273.001 (3)140.2
N10—H10B···O30.902.132.749 (2)125.7
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x, y1, z; (iv) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds