Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C16H15N3OS, the crystal packing is stabilized by inter- and intra­molecular N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034836/at2335sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034836/at2335Isup2.hkl
Contains datablock I

CCDC reference: 653953

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.063
  • wR factor = 0.179
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4 PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 - C4 .. 5.27 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C10 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C12 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C13 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.76 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C11 -C16 1.36 Ang. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C7 - C9 ... 1.42 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2A ... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 14 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyridine derivatives are important compounds in terms of pesticides and medicines (Bretschneider et al., 1999; Hirano 2000; Hui et al., 2000; Nicholas et al., 2000). We report here the molecular structure of the title compound (I).

In the title compound (I), all bond lengths and angles are within normal ranges (Allen et al., 1987) and the crystal structure are stabilized by intra and intermolecular hydrogen bonds (Table 1).

Related literature top

For biological and pharmaceutical activity of pyridines, see Psnreddy et al. (1987); Hui et al. (2000). Many derivatives of pyridines have been prepared by Bretschneider et al. (1999) and Hirano (2000). For related literature, see: Allen et al. (1987); Lin et al. (2002); Nicholas & Molinskiet (2000).

Experimental top

2-(Amino-benzylsulfanyl-methylene)-malononitrile (1.29 g, 10 mmol) and acetylacetone (0.72 g, 12 mmol) were added to a solution of zinc nitrate (3.56 g, 20 mmol) in ethanol (15 ml) at room temperature while stirring. The mixture was then refluxed for 12 h. The precipitate was filtered and washed with water, recrystallized from ethanol to give the title compound (yield 59%). Red crystals of (I) suitable for X-ray structure analysis were grown from ethanol.

Refinement top

All H atoms were placed in calculated positions, with N—H = 0.86 Å and C—H distances in the range 0.93–0.97 Å, and included in the final cycles of refinement using a riding-model approximation, with Uiso(H) = 1.2–1.5Ueq(carrier atom).

Structure description top

Pyridine derivatives are important compounds in terms of pesticides and medicines (Bretschneider et al., 1999; Hirano 2000; Hui et al., 2000; Nicholas et al., 2000). We report here the molecular structure of the title compound (I).

In the title compound (I), all bond lengths and angles are within normal ranges (Allen et al., 1987) and the crystal structure are stabilized by intra and intermolecular hydrogen bonds (Table 1).

For biological and pharmaceutical activity of pyridines, see Psnreddy et al. (1987); Hui et al. (2000). Many derivatives of pyridines have been prepared by Bretschneider et al. (1999) and Hirano (2000). For related literature, see: Allen et al. (1987); Lin et al. (2002); Nicholas & Molinskiet (2000).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I). showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing diagram of (I). Hydrogen bonds are shown as dashed lines.
5-Acetyl-4-amino-2-benzylsulfanyl-6-methylnicotinonitrile top
Crystal data top
C16H15N3OSZ = 2
Mr = 297.37F(000) = 312
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6850 (5) ÅCell parameters from 822 reflections
b = 9.9127 (6) Åθ = 2.5–19.2°
c = 10.3236 (7) ŵ = 0.22 mm1
α = 111.007 (1)°T = 295 K
β = 105.027 (1)°Block, red
γ = 101.552 (1)°0.16 × 0.10 × 0.10 mm
V = 757.78 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2621 independent reflections
Radiation source: fine-focus sealed tube1413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 108
Tmin = 0.966, Tmax = 0.979k = 1111
5133 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0923P)2]
where P = (Fo2 + 2Fc2)/3
2621 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H15N3OSγ = 101.552 (1)°
Mr = 297.37V = 757.78 (8) Å3
Triclinic, P1Z = 2
a = 8.6850 (5) ÅMo Kα radiation
b = 9.9127 (6) ŵ = 0.22 mm1
c = 10.3236 (7) ÅT = 295 K
α = 111.007 (1)°0.16 × 0.10 × 0.10 mm
β = 105.027 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2621 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1413 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.025
5133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 0.99Δρmax = 0.17 e Å3
2621 reflectionsΔρmin = 0.16 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26894 (14)0.45770 (11)0.72133 (11)0.0998 (5)
N10.2088 (4)0.4459 (3)0.9578 (3)0.0936 (9)
C70.3932 (4)0.6858 (4)1.0011 (4)0.0775 (10)
C30.3315 (4)0.6554 (4)1.2065 (4)0.0775 (10)
C20.3636 (5)0.7181 (5)1.3694 (4)0.0868 (11)
O10.3731 (4)0.8483 (3)1.4385 (3)0.1101 (9)
N20.4994 (4)0.8984 (4)1.2380 (4)0.1074 (10)
H2A0.54740.95331.20210.129*
H2B0.50930.93841.32990.129*
C40.2318 (5)0.5065 (4)1.1043 (5)0.0885 (12)
C60.4095 (4)0.7511 (4)1.1507 (4)0.0794 (10)
C80.2931 (5)0.5339 (4)0.9098 (4)0.0840 (10)
C90.4776 (4)0.7725 (4)0.9408 (4)0.0859 (10)
C110.0735 (5)0.1891 (4)0.4854 (5)0.0885 (11)
N30.5430 (4)0.8423 (4)0.8923 (3)0.1136 (11)
C50.1246 (5)0.3945 (4)1.1406 (5)0.1151 (14)
H5A0.02860.32471.05290.173*
H5B0.08700.44951.21700.173*
H5C0.19030.33851.17480.173*
C160.1482 (5)0.0911 (4)0.4183 (5)0.0974 (11)
H160.23690.07400.47600.117*
C140.0360 (7)0.0392 (6)0.1803 (6)0.1275 (17)
H140.07480.01390.07720.153*
C100.1286 (6)0.2644 (4)0.6516 (5)0.1131 (13)
H10A0.18650.20710.69350.136*
H10B0.03110.26680.68050.136*
C130.1093 (6)0.1380 (8)0.2438 (8)0.150 (2)
H130.19650.15580.18510.180*
C150.0931 (6)0.0166 (5)0.2647 (6)0.1173 (14)
H150.14570.04940.21970.141*
C10.3932 (6)0.6203 (5)1.4510 (4)0.1248 (16)
H1A0.48780.67911.54280.187*
H1B0.41590.53321.39020.187*
H1C0.29460.58641.47160.187*
C120.0554 (6)0.2116 (7)0.3942 (7)0.1387 (19)
H120.10720.27970.43720.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1349 (10)0.1084 (7)0.1140 (8)0.0544 (6)0.0875 (8)0.0726 (6)
N10.127 (3)0.1003 (19)0.125 (3)0.0618 (18)0.091 (2)0.0806 (19)
C70.089 (2)0.109 (3)0.094 (3)0.052 (2)0.059 (2)0.079 (2)
C30.096 (3)0.103 (3)0.103 (3)0.063 (2)0.067 (2)0.081 (2)
C20.095 (3)0.143 (3)0.108 (3)0.075 (2)0.074 (2)0.099 (3)
O10.153 (3)0.129 (2)0.109 (2)0.071 (2)0.0761 (19)0.0827 (18)
N20.136 (3)0.132 (3)0.093 (2)0.036 (2)0.059 (2)0.083 (2)
C40.121 (3)0.112 (3)0.125 (3)0.080 (3)0.094 (3)0.095 (3)
C60.089 (3)0.104 (3)0.099 (3)0.048 (2)0.055 (2)0.079 (2)
C80.103 (3)0.110 (3)0.109 (3)0.065 (2)0.075 (2)0.079 (2)
C90.094 (3)0.112 (2)0.087 (2)0.035 (2)0.046 (2)0.071 (2)
C110.090 (3)0.113 (3)0.115 (3)0.045 (2)0.063 (3)0.080 (3)
N30.125 (3)0.144 (3)0.103 (2)0.024 (2)0.056 (2)0.086 (2)
C50.155 (4)0.122 (3)0.146 (4)0.062 (3)0.108 (3)0.096 (3)
C160.089 (3)0.105 (3)0.106 (3)0.041 (2)0.032 (3)0.052 (3)
C140.092 (4)0.168 (5)0.118 (4)0.010 (3)0.024 (3)0.093 (4)
C100.156 (4)0.107 (3)0.128 (3)0.052 (3)0.089 (3)0.075 (3)
C130.088 (4)0.253 (7)0.185 (6)0.062 (4)0.056 (4)0.169 (6)
C150.114 (4)0.126 (3)0.112 (4)0.033 (3)0.049 (3)0.049 (3)
C10.175 (4)0.189 (4)0.137 (3)0.123 (4)0.107 (3)0.137 (3)
C120.124 (4)0.224 (5)0.191 (5)0.112 (4)0.109 (4)0.155 (5)
Geometric parameters (Å, º) top
S1—C81.752 (4)C11—C101.497 (5)
S1—C101.815 (4)C5—H5A0.9600
N1—C81.336 (4)C5—H5B0.9600
N1—C41.353 (4)C5—H5C0.9600
C7—C81.395 (5)C16—C151.383 (5)
C7—C61.399 (4)C16—H160.9300
C7—C91.425 (4)C14—C151.341 (6)
C3—C41.393 (5)C14—C131.342 (7)
C3—C61.423 (4)C14—H140.9300
C3—C21.494 (5)C10—H10A0.9700
C2—O11.203 (4)C10—H10B0.9700
C2—C11.512 (4)C13—C121.355 (7)
N2—C61.338 (4)C13—H130.9300
N2—H2A0.8600C15—H150.9300
N2—H2B0.8600C1—H1A0.9600
C4—C51.519 (4)C1—H1B0.9600
C9—N31.136 (4)C1—H1C0.9600
C11—C161.359 (5)C12—H120.9300
C11—C121.376 (6)
C8—S1—C10101.86 (18)C4—C5—H5C109.5
C8—N1—C4117.3 (3)H5A—C5—H5C109.5
C8—C7—C6119.5 (3)H5B—C5—H5C109.5
C8—C7—C9119.5 (3)C11—C16—C15120.4 (4)
C6—C7—C9120.9 (3)C11—C16—H16119.8
C4—C3—C6117.1 (3)C15—C16—H16119.8
C4—C3—C2124.0 (3)C15—C14—C13120.4 (5)
C6—C3—C2118.8 (4)C15—C14—H14119.8
O1—C2—C3120.7 (3)C13—C14—H14119.8
O1—C2—C1119.2 (3)C11—C10—S1108.9 (2)
C3—C2—C1120.1 (4)C11—C10—H10A109.9
C6—N2—H2A120.0S1—C10—H10A109.9
C6—N2—H2B120.0C11—C10—H10B109.9
H2A—N2—H2B120.0S1—C10—H10B109.9
N1—C4—C3124.6 (3)H10A—C10—H10B108.3
N1—C4—C5111.0 (4)C14—C13—C12119.5 (5)
C3—C4—C5124.2 (3)C14—C13—H13120.3
N2—C6—C7120.1 (3)C12—C13—H13120.3
N2—C6—C3121.8 (3)C14—C15—C16120.3 (5)
C7—C6—C3118.1 (4)C14—C15—H15119.8
N1—C8—C7123.0 (3)C16—C15—H15119.8
N1—C8—S1118.5 (3)C2—C1—H1A109.5
C7—C8—S1118.4 (2)C2—C1—H1B109.5
N3—C9—C7179.0 (4)H1A—C1—H1B109.5
C16—C11—C12117.1 (4)C2—C1—H1C109.5
C16—C11—C10120.3 (4)H1A—C1—H1C109.5
C12—C11—C10122.6 (4)H1B—C1—H1C109.5
C4—C5—H5A109.5C13—C12—C11122.2 (5)
C4—C5—H5B109.5C13—C12—H12118.9
H5A—C5—H5B109.5C11—C12—H12118.9
C4—C3—C2—O1143.0 (4)C4—N1—C8—S1178.9 (2)
C6—C3—C2—O138.4 (5)C6—C7—C8—N10.8 (5)
C4—C3—C2—C140.0 (5)C9—C7—C8—N1179.3 (3)
C6—C3—C2—C1138.5 (3)C6—C7—C8—S1177.6 (2)
C8—N1—C4—C32.7 (5)C9—C7—C8—S12.4 (4)
C8—N1—C4—C5178.6 (3)C10—S1—C8—N11.9 (3)
C6—C3—C4—N12.2 (5)C10—S1—C8—C7178.9 (3)
C2—C3—C4—N1176.4 (3)C12—C11—C16—C151.0 (6)
C6—C3—C4—C5173.2 (3)C10—C11—C16—C15177.4 (4)
C2—C3—C4—C58.3 (5)C16—C11—C10—S1100.1 (3)
C8—C7—C6—N2177.3 (3)C12—C11—C10—S181.6 (4)
C9—C7—C6—N22.8 (5)C8—S1—C10—C11171.6 (3)
C8—C7—C6—C34.2 (5)C15—C14—C13—C121.9 (8)
C9—C7—C6—C3175.7 (3)C13—C14—C15—C162.2 (7)
C4—C3—C6—N2176.0 (3)C11—C16—C15—C140.7 (6)
C2—C3—C6—N25.4 (5)C14—C13—C12—C110.2 (8)
C4—C3—C6—C75.5 (4)C16—C11—C12—C131.2 (7)
C2—C3—C6—C7173.1 (3)C10—C11—C12—C13177.1 (4)
C4—N1—C8—C74.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O10.862.112.726 (3)129
N2—H2B···O1i0.862.343.105 (5)148
Symmetry code: (i) x+1, y+2, z+3.

Experimental details

Crystal data
Chemical formulaC16H15N3OS
Mr297.37
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.6850 (5), 9.9127 (6), 10.3236 (7)
α, β, γ (°)111.007 (1), 105.027 (1), 101.552 (1)
V3)757.78 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.16 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5133, 2621, 1413
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.179, 0.99
No. of reflections2621
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O10.862.112.726 (3)128.6
N2—H2B···O1i0.862.343.105 (5)148.3
Symmetry code: (i) x+1, y+2, z+3.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds