Download citation
Download citation
link to html
The hydro­thermal reaction of 2,6-ditriazol-4-ylpyridine, benzene-1,2,4,5-tetra­carboxylic acid and ZnSO4·7H2O led to the formation of the cocrystal compound 2,6-ditriazol-4-ylpyridine–benzene-1,2,4,5-tetra­carboxylic acid (2/1), 2C9H7N7·C10H6O8, in which hydrogen-bonding and π–π stacking inter­actions (3.404 Å) assemble the mol­ecules into a three-dimensional supra­molecular framework. The acid molecule lies on an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028759/at2328sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028759/at2328Isup2.hkl
Contains datablock I

CCDC reference: 654966

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.099
  • Data-to-parameter ratio = 11.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.19 PLAT432_ALERT_2_C Short Inter X...Y Contact O4 .. C9 .. 2.97 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, there has been a growing interest in coordination polymers based on 1,2,4,5-benzenetetracarboxylate and 2,6-ditriazol-4-ylpyridine ligands (Wang, Xi, Su, Lan, Mao, You & Xie, 2007; Xia et al., 2007). In the course of preparing mixed-ligand (ternary) complexes containing such organic ligands and metal ions, a new cocrystal compound of 2,6-ditriazol-4-ylpyridine (dtp) and benzene-1,2,4,5-tetracarboxylic acid (H4Btec) was obtained which assembled by H-bonding and π-π stacking interaction. Hydrogen bonding and π-π interaction are important in the areas of supramolecular chemistry, crystal engineering, and biological recognition (Wang, Ding, Cheng, Liao & Yan, 2007). Herein we report the supramolecular framework of the title compound (C9H7N7)(C10H6O8)1/2, (I).

As shown in Fig. 1, the asymmetric structural unit contains one dtp molecule and half of H4Btec molecule. Bond lengths and angles are normal as expected. In dtp molecule, one triazole group is nearly planar with the pyridyl ring (dihedral angle of 3.1 (1)°), while the other triazole group has a dihedral angle of 33.5 (3)° with the pyridyl ring plane. Each carboxyl group of H4Btec links a triazole N atom through H-bonding interaction. The distance between the aromatic rings of adjacent dtp and H4Btec is ca 3.404 Å, which indicates the presence of some π-π stacking interaction. The intermolecular H-bonding and π-π stacking interaction assemble the molecules into a three-dimensional supramolecular framework (Fig. 2).

Related literature top

For related literature, see: Wang, Xi et al. (2007); Wang, Ding et al. (2007); Xia et al. (2007).

Experimental top

A mixture of dtp (0.10 mmol), H4betc (0.10 mmol), ZnSO47H2O (0.20 mmol), and water (8 ml) was sealed in a Teflon-lined stainless steel vessel, which was heated at 393 K for 4 days and cooled to room temperature at a rate of 10 K/h. Light yellow crystals suitable for X-ray diffraction were obtained.

Refinement top

The H atoms were located geometrically, with C—H = 0.93 and O—H = 0.82 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

Recently, there has been a growing interest in coordination polymers based on 1,2,4,5-benzenetetracarboxylate and 2,6-ditriazol-4-ylpyridine ligands (Wang, Xi, Su, Lan, Mao, You & Xie, 2007; Xia et al., 2007). In the course of preparing mixed-ligand (ternary) complexes containing such organic ligands and metal ions, a new cocrystal compound of 2,6-ditriazol-4-ylpyridine (dtp) and benzene-1,2,4,5-tetracarboxylic acid (H4Btec) was obtained which assembled by H-bonding and π-π stacking interaction. Hydrogen bonding and π-π interaction are important in the areas of supramolecular chemistry, crystal engineering, and biological recognition (Wang, Ding, Cheng, Liao & Yan, 2007). Herein we report the supramolecular framework of the title compound (C9H7N7)(C10H6O8)1/2, (I).

As shown in Fig. 1, the asymmetric structural unit contains one dtp molecule and half of H4Btec molecule. Bond lengths and angles are normal as expected. In dtp molecule, one triazole group is nearly planar with the pyridyl ring (dihedral angle of 3.1 (1)°), while the other triazole group has a dihedral angle of 33.5 (3)° with the pyridyl ring plane. Each carboxyl group of H4Btec links a triazole N atom through H-bonding interaction. The distance between the aromatic rings of adjacent dtp and H4Btec is ca 3.404 Å, which indicates the presence of some π-π stacking interaction. The intermolecular H-bonding and π-π stacking interaction assemble the molecules into a three-dimensional supramolecular framework (Fig. 2).

For related literature, see: Wang, Xi et al. (2007); Wang, Ding et al. (2007); Xia et al. (2007).

Computing details top

Data collection: APEX (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I), showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A crystal packing diagram of compound (I).
2,6-ditriazol-4-ylpyridine–benzene-1,2,4,5-tetracarboxylic acid (2/1) top
Crystal data top
2C9H7N7·C10H6O8F(000) = 700
Mr = 680.58Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2052 reflections
a = 9.0972 (12) Åθ = 2.4–24.7°
b = 15.799 (2) ŵ = 0.12 mm1
c = 10.0741 (13) ÅT = 273 K
β = 100.523 (2)°Block, light-yellow
V = 1423.6 (3) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1971 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.1°, θmin = 2.3°
ω scansh = 1010
7302 measured reflectionsk = 1518
2520 independent reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.4345P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2520 reflectionsΔρmax = 0.23 e Å3
229 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0056 (11)
Crystal data top
2C9H7N7·C10H6O8V = 1423.6 (3) Å3
Mr = 680.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.0972 (12) ŵ = 0.12 mm1
b = 15.799 (2) ÅT = 273 K
c = 10.0741 (13) Å0.20 × 0.20 × 0.10 mm
β = 100.523 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1971 reflections with I > 2σ(I)
7302 measured reflectionsRint = 0.026
2520 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
2520 reflectionsΔρmin = 0.20 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36742 (16)0.16599 (9)0.69912 (15)0.0334 (4)
N20.61300 (16)0.12340 (10)0.75896 (15)0.0364 (4)
N50.11742 (16)0.19751 (10)0.62929 (15)0.0356 (4)
C50.49874 (19)0.18189 (11)0.77677 (18)0.0332 (4)
C80.0829 (2)0.12795 (12)0.55123 (19)0.0418 (5)
H80.14890.08420.54300.050*
N30.82721 (18)0.05862 (12)0.77901 (18)0.0501 (5)
C110.64839 (19)0.02667 (12)0.03665 (17)0.0335 (4)
N40.72429 (18)0.01326 (11)0.68780 (17)0.0476 (5)
C120.59825 (19)0.04348 (12)0.09964 (17)0.0333 (4)
N70.05551 (18)0.13098 (11)0.48951 (17)0.0470 (5)
C10.25722 (19)0.21877 (11)0.71126 (18)0.0326 (4)
C140.54929 (19)0.06941 (12)0.06162 (17)0.0349 (4)
H140.58240.11650.10300.042*
C70.5986 (2)0.05369 (12)0.67899 (19)0.0405 (5)
H70.50950.03690.62450.049*
N60.11620 (19)0.20543 (12)0.52764 (19)0.0579 (5)
C100.8071 (2)0.05768 (14)0.06808 (19)0.0401 (5)
C130.6961 (2)0.09339 (13)0.20797 (19)0.0371 (5)
C40.5271 (2)0.24769 (13)0.86786 (19)0.0400 (5)
H40.62020.25500.92250.048*
C60.7595 (2)0.12313 (14)0.8190 (2)0.0490 (6)
H60.80460.16360.88020.059*
C20.2718 (2)0.28829 (12)0.79400 (19)0.0410 (5)
H20.19200.32470.79650.049*
C30.4101 (2)0.30172 (13)0.87337 (19)0.0439 (5)
H30.42450.34800.93140.053*
C90.0114 (2)0.24308 (15)0.6100 (2)0.0529 (6)
H90.02250.29480.65100.064*
O30.72577 (16)0.05287 (9)0.32395 (13)0.0483 (4)
H3A0.79240.07770.37510.073*
O20.89983 (15)0.00163 (10)0.13212 (17)0.0637 (5)
H2A0.98260.02320.15490.096*
O40.73355 (17)0.16479 (10)0.19046 (15)0.0566 (4)
O10.84301 (16)0.12654 (10)0.03551 (17)0.0615 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0241 (8)0.0378 (9)0.0356 (8)0.0001 (7)0.0019 (6)0.0005 (7)
N20.0213 (8)0.0418 (9)0.0426 (9)0.0003 (7)0.0032 (6)0.0017 (7)
N50.0229 (8)0.0405 (9)0.0395 (9)0.0033 (7)0.0043 (6)0.0019 (7)
C50.0249 (9)0.0364 (10)0.0359 (10)0.0018 (8)0.0008 (7)0.0059 (8)
C80.0310 (11)0.0417 (12)0.0477 (12)0.0029 (9)0.0058 (9)0.0059 (10)
N30.0244 (9)0.0629 (12)0.0597 (11)0.0039 (8)0.0012 (8)0.0004 (10)
C110.0228 (9)0.0433 (11)0.0336 (10)0.0020 (8)0.0025 (8)0.0056 (8)
N40.0318 (9)0.0533 (11)0.0558 (11)0.0051 (8)0.0029 (8)0.0003 (9)
C120.0241 (9)0.0435 (11)0.0314 (10)0.0018 (8)0.0025 (7)0.0037 (8)
N70.0323 (9)0.0533 (11)0.0498 (10)0.0010 (8)0.0074 (8)0.0056 (9)
C10.0247 (9)0.0374 (10)0.0333 (10)0.0001 (8)0.0007 (7)0.0027 (8)
C140.0280 (10)0.0415 (11)0.0352 (10)0.0025 (8)0.0054 (8)0.0004 (8)
C70.0281 (11)0.0450 (12)0.0453 (12)0.0000 (9)0.0010 (8)0.0025 (10)
N60.0323 (10)0.0647 (13)0.0680 (12)0.0101 (9)0.0137 (9)0.0146 (10)
C100.0261 (10)0.0540 (13)0.0390 (11)0.0035 (9)0.0028 (8)0.0021 (10)
C130.0236 (10)0.0454 (12)0.0411 (11)0.0012 (9)0.0028 (8)0.0015 (9)
C40.0288 (10)0.0459 (12)0.0404 (11)0.0052 (9)0.0064 (8)0.0010 (9)
C60.0257 (11)0.0601 (14)0.0563 (13)0.0001 (10)0.0050 (9)0.0063 (11)
C20.0368 (11)0.0416 (12)0.0425 (11)0.0051 (9)0.0017 (9)0.0053 (9)
C30.0449 (12)0.0440 (12)0.0395 (11)0.0044 (10)0.0006 (9)0.0076 (9)
C90.0305 (11)0.0556 (14)0.0660 (14)0.0114 (10)0.0090 (10)0.0137 (11)
O30.0453 (9)0.0526 (9)0.0406 (8)0.0104 (7)0.0091 (6)0.0017 (7)
O20.0222 (7)0.0780 (11)0.0839 (11)0.0094 (7)0.0086 (8)0.0231 (9)
O40.0513 (9)0.0497 (10)0.0638 (10)0.0160 (8)0.0024 (7)0.0079 (8)
O10.0362 (9)0.0576 (10)0.0872 (12)0.0137 (7)0.0018 (8)0.0096 (9)
Geometric parameters (Å, º) top
N1—C11.327 (2)N7—N61.383 (2)
N1—C51.327 (2)C1—C21.371 (3)
N2—C71.357 (2)C14—C12i1.389 (2)
N2—C61.359 (2)C14—H140.9300
N2—C51.426 (2)C7—H70.9300
N5—C81.355 (2)N6—C91.290 (3)
N5—C91.359 (2)C10—O11.199 (2)
N5—C11.424 (2)C10—O21.309 (2)
C5—C41.380 (3)C13—O41.201 (2)
C8—N71.299 (2)C13—O31.316 (2)
C8—H80.9300C4—C31.373 (3)
N3—C61.293 (3)C4—H40.9300
N3—N41.386 (2)C6—H60.9300
C11—C141.387 (2)C2—C31.379 (3)
C11—C121.394 (3)C2—H20.9300
C11—C101.503 (2)C3—H30.9300
N4—C71.299 (2)C9—H90.9300
C12—C14i1.389 (2)O3—H3A0.8200
C12—C131.500 (2)O2—H2A0.8200
C1—N1—C5116.15 (16)N4—C7—N2111.73 (17)
C7—N2—C6104.03 (16)N4—C7—H7124.1
C7—N2—C5127.36 (15)N2—C7—H7124.1
C6—N2—C5128.60 (17)C9—N6—N7106.57 (16)
C8—N5—C9104.15 (16)O1—C10—O2124.45 (18)
C8—N5—C1128.01 (16)O1—C10—C11122.52 (18)
C9—N5—C1127.83 (17)O2—C10—C11113.02 (17)
N1—C5—C4124.99 (17)O4—C13—O3124.71 (18)
N1—C5—N2113.67 (16)O4—C13—C12122.26 (17)
C4—C5—N2121.33 (16)O3—C13—C12112.86 (16)
N7—C8—N5110.47 (17)C3—C4—C5116.33 (17)
N7—C8—H8124.8C3—C4—H4121.8
N5—C8—H8124.8C5—C4—H4121.8
C6—N3—N4108.15 (16)N3—C6—N2110.38 (19)
C14—C11—C12119.20 (16)N3—C6—H6124.8
C14—C11—C10117.78 (17)N2—C6—H6124.8
C12—C11—C10123.01 (16)C1—C2—C3116.90 (18)
C7—N4—N3105.71 (17)C1—C2—H2121.5
C14i—C12—C11119.27 (16)C3—C2—H2121.5
C14i—C12—C13117.42 (17)C4—C3—C2120.86 (19)
C11—C12—C13123.31 (16)C4—C3—H3119.6
C8—N7—N6107.43 (16)C2—C3—H3119.6
N1—C1—C2124.69 (17)N6—C9—N5111.38 (19)
N1—C1—N5114.08 (16)N6—C9—H9124.3
C2—C1—N5121.23 (17)N5—C9—H9124.3
C11—C14—C12i121.52 (18)C13—O3—H3A109.5
C11—C14—H14119.2C10—O2—H2A109.5
C12i—C14—H14119.2
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N3ii0.821.822.639 (2)172
O3—H3A···N7iii0.821.842.656 (2)179
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C9H7N7·C10H6O8
Mr680.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.0972 (12), 15.799 (2), 10.0741 (13)
β (°) 100.523 (2)
V3)1423.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7302, 2520, 1971
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.04
No. of reflections2520
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N3i0.821.822.639 (2)172.1
O3—H3A···N7ii0.821.842.656 (2)178.6
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds