Download citation
Download citation
link to html
The LaIII atom in the title complex, [La(C9H9O2)3(C12H8N2)], is coordinated by two N atoms of a 1,10-phenanthroline (phen) ligand and four O atoms of three phenyl­propanoate ligands. This mononuclear complex is further extended into a supra­molecular network structure via nonclassical hydrogen bonds between CH groups of 1,10-phenanthroline or phenyl­propanoate and O atoms of neighbouring phenyl­propanoate ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028693/at2323sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028693/at2323Isup2.hkl
Contains datablock I

CCDC reference: 1249796

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.041
  • wR factor = 0.171
  • Data-to-parameter ratio = 19.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C6 PLAT410_ALERT_2_B Short Intra H...H Contact H12 .. H24A .. 1.88 Ang.
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.76 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C27 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C33 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for La1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C25 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C32 PLAT333_ALERT_2_C Large Average Benzene C-C Dist. C4 -C6 1.44 Ang. PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 14 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C14 - C15 ... 1.40 Ang. PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C32 - C33 ... 1.38 Ang. PLAT362_ALERT_2_C Short C(sp3)-C(sp2) Bond C15 - C16 ... 1.37 Ang. PLAT362_ALERT_2_C Short C(sp3)-C(sp2) Bond C24 - C25 ... 1.37 Ang. PLAT362_ALERT_2_C Short C(sp3)-C(sp2) Bond C33 - C34 ... 1.32 Ang. PLAT410_ALERT_2_C Short Intra H...H Contact H14B .. H24B .. 1.91 Ang. PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 78.00 A   3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for La1 (3) 3.15 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 17 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, there has been great interest in the synthesis of metal organic frameworks (MOFs) with organic ligands and rare earth metals because of their novel structures, fascinating properties and important roles in special materials having optical, electronic, magnetic and biological importance potential applications (Deborah et al., 2000; Farrugia et al., 2000; Tsukube & Shinoda, 2002; Zhang et al., 2005). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Starynowicz, 1991, 1993; Kay et al., 1972; Ma et al., 1999; Zeng et al., 2000; Mao et al., 1998). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six-coordinate environment of the La atom is completed by The two N atoms of 1,10-phenanthroline ligand and four O atoms of three benzenepropanoic acid ligands (Table 1). The La—O bond lengths are in the range 2.478 (4) to 2.908 (6) Å. The La—N bond lengths are in the range 2.717 (6) to 2.749 (5) Å. C—H···O non-classical hydrogen bonds between C—H groups of 1,10-phenanthroline or benzenepropanoic acid and O atoms of neighbouring benzenepropanoic acid molecules, with an average C···O distances of 3.235 (10) Å, generate a layered hydrogen-bonded network (Fig. 2 and Table 2). The non-classical hydrogen-bonding interactions link the mononuclear complex into a supramolecular network structure.

Related literature top

For related literature, see: Allen et al. (1987); Deborah et al. (2000); Farrugia et al. (2000); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Starynowicz (1991, 1993); Tsukube & Shinoda (2002); Zhang et al. (2005); Zeng et al. (2000).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Lanthanum (III) chloride hexahydrate (106.1 mg, 0.3 mmol), phen (59.4 mg, 0.3 mmol), benzenepropanoic acid (90.1 mg, 0.6 mmol) and distilled water (3.5 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 423 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small colourless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 - 0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, there has been great interest in the synthesis of metal organic frameworks (MOFs) with organic ligands and rare earth metals because of their novel structures, fascinating properties and important roles in special materials having optical, electronic, magnetic and biological importance potential applications (Deborah et al., 2000; Farrugia et al., 2000; Tsukube & Shinoda, 2002; Zhang et al., 2005). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Starynowicz, 1991, 1993; Kay et al., 1972; Ma et al., 1999; Zeng et al., 2000; Mao et al., 1998). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six-coordinate environment of the La atom is completed by The two N atoms of 1,10-phenanthroline ligand and four O atoms of three benzenepropanoic acid ligands (Table 1). The La—O bond lengths are in the range 2.478 (4) to 2.908 (6) Å. The La—N bond lengths are in the range 2.717 (6) to 2.749 (5) Å. C—H···O non-classical hydrogen bonds between C—H groups of 1,10-phenanthroline or benzenepropanoic acid and O atoms of neighbouring benzenepropanoic acid molecules, with an average C···O distances of 3.235 (10) Å, generate a layered hydrogen-bonded network (Fig. 2 and Table 2). The non-classical hydrogen-bonding interactions link the mononuclear complex into a supramolecular network structure.

For related literature, see: Allen et al. (1987); Deborah et al. (2000); Farrugia et al. (2000); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Starynowicz (1991, 1993); Tsukube & Shinoda (2002); Zhang et al. (2005); Zeng et al. (2000).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonding interactions are shown as dashed lines.
(1,10-Phenanthroline)tri(3-phenylpropanoato)lanthanum(III) top
Crystal data top
[La(C9H9O2)3(C12H8N2)]F(000) = 1552
Mr = 766.60Dx = 1.443 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9043 reflections
a = 19.904 (3) Åθ = 2.5–26.9°
b = 8.783 (5) ŵ = 1.26 mm1
c = 21.012 (2) ÅT = 273 K
β = 106.163 (2)°Plane, colourless
V = 3528 (2) Å30.33 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker APE XII area-detector
diffractometer
7231 independent reflections
Radiation source: fine-focus sealed tube4916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 26.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2524
Tmin = 0.682, Tmax = 0.907k = 1011
26367 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1521P)2 + 0.285P]
where P = (Fo2 + 2Fc2)/3
7231 reflections(Δ/σ)max = 0.003
373 parametersΔρmax = 1.05 e Å3
4 restraintsΔρmin = 1.18 e Å3
Crystal data top
[La(C9H9O2)3(C12H8N2)]V = 3528 (2) Å3
Mr = 766.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 19.904 (3) ŵ = 1.26 mm1
b = 8.783 (5) ÅT = 273 K
c = 21.012 (2) Å0.33 × 0.12 × 0.08 mm
β = 106.163 (2)°
Data collection top
Bruker APE XII area-detector
diffractometer
7231 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4916 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.907Rint = 0.042
26367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 0.96Δρmax = 1.05 e Å3
7231 reflectionsΔρmin = 1.18 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.931195 (16)0.19073 (4)0.964267 (15)0.04126 (16)
O10.9710 (2)0.0605 (5)0.8751 (2)0.0567 (11)
O21.0666 (2)0.0830 (6)0.9217 (2)0.0606 (12)
O40.9402 (2)0.4212 (5)1.0342 (2)0.0565 (11)
O51.0078 (3)0.6126 (6)1.0912 (2)0.0669 (13)
O70.8464 (2)0.0365 (5)0.9192 (2)0.0536 (10)
O80.9469 (2)0.1380 (6)0.9773 (2)0.0588 (11)
N10.7968 (3)0.2345 (7)0.9665 (3)0.0577 (13)
N20.8346 (3)0.3067 (6)0.8549 (3)0.0562 (14)
C10.7780 (4)0.1909 (9)1.0205 (4)0.073 (2)
H10.81260.16831.05920.088*
C20.7095 (5)0.1790 (11)1.0201 (5)0.096 (3)
H20.69740.14871.05780.115*
C30.6579 (5)0.2135 (12)0.9613 (6)0.103 (4)
H30.61110.20530.96050.123*
C40.6744 (4)0.2596 (13)0.9041 (5)0.088 (3)
C50.7461 (4)0.2671 (8)0.9093 (4)0.0613 (17)
C60.6192 (6)0.2951 (16)0.8423 (7)0.137 (6)
H60.57200.28590.83980.165*
C70.6419 (5)0.3449 (14)0.7854 (5)0.111 (4)
H70.60910.37110.74590.133*
C80.7127 (5)0.3529 (11)0.7907 (4)0.083 (3)
C90.7658 (4)0.3097 (7)0.8501 (4)0.0601 (19)
C100.7367 (6)0.4012 (12)0.7367 (4)0.096 (3)
H100.70480.43180.69750.116*
C110.8049 (6)0.4030 (11)0.7419 (4)0.092 (3)
H110.82100.44030.70740.110*
C120.8525 (5)0.3479 (9)0.8001 (4)0.072 (2)
H120.89930.33950.80070.086*
C131.0282 (3)0.0026 (7)0.8772 (3)0.0506 (14)
C141.0520 (3)0.0495 (8)0.8169 (3)0.0573 (9)
H14A1.01790.01630.77670.069*
H14B1.05570.15950.81550.069*
C151.1171 (3)0.0166 (8)0.8208 (3)0.0573 (9)
H15A1.14990.01680.86170.069*
H15B1.11240.12610.82360.069*
C161.1455 (3)0.0142 (8)0.7698 (3)0.0573 (9)
C171.2069 (5)0.0559 (12)0.7763 (5)0.095 (3)
H171.22720.11530.81330.113*
C181.2400 (5)0.0370 (14)0.7251 (6)0.108 (3)
H181.28210.08580.72760.129*
C191.2087 (7)0.0555 (13)0.6709 (7)0.119 (4)
H191.23100.06830.63770.142*
C201.1488 (7)0.1251 (15)0.6652 (6)0.122 (4)
H201.12880.18440.62810.146*
C211.1144 (5)0.1094 (12)0.7162 (5)0.096 (3)
H211.07290.16070.71390.115*
C220.9691 (3)0.4986 (7)1.0859 (3)0.0522 (15)
C230.9485 (4)0.4458 (8)1.1470 (3)0.0543 (9)
H23B0.89870.46101.13970.065*
H23A0.95800.33771.15350.065*
C240.9861 (4)0.5271 (8)1.2062 (3)0.0543 (9)
H24A1.03570.51491.21100.065*
H24B0.97550.63451.19860.065*
C250.9745 (4)0.4892 (7)1.2653 (3)0.0543 (9)
C260.9276 (4)0.3793 (12)1.2714 (4)0.084 (2)
H260.90160.32571.23460.101*
C270.9198 (7)0.3499 (16)1.3343 (5)0.126 (5)
H270.89000.27241.33970.151*
C280.9559 (6)0.4345 (15)1.3892 (5)0.115 (4)
H280.94700.41871.42990.137*
C291.0048 (5)0.5416 (13)1.3838 (4)0.102 (3)
H291.03050.59451.42100.122*
C301.0153 (4)0.5697 (10)1.3218 (4)0.082 (2)
H301.04850.64031.31740.099*
C310.8838 (3)0.1527 (8)0.9391 (3)0.0517 (15)
C320.8576 (4)0.3131 (8)0.9188 (4)0.0626 (19)
H32A0.87590.34520.88270.075*
H32B0.87690.38080.95590.075*
C330.7861 (6)0.3313 (11)0.8993 (6)0.1096 (14)
H33A0.76680.25890.86410.132*
H33B0.77600.43240.88060.132*
C340.7529 (7)0.3143 (9)0.9451 (7)0.1096 (14)
C350.7848 (7)0.2738 (12)1.0127 (7)0.1096 (14)
H350.83250.25471.02880.132*
C360.7374 (6)0.2645 (13)1.0548 (7)0.1096 (14)
H360.75300.23901.09950.132*
C370.6703 (7)0.2950 (11)1.0249 (7)0.1096 (14)
H370.64030.28761.05170.132*
C380.6407 (7)0.3338 (12)0.9634 (7)0.1096 (14)
H380.59340.35840.94910.132*
C390.6811 (6)0.3370 (12)0.9211 (7)0.1096 (14)
H390.66090.35440.87620.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0460 (2)0.0376 (2)0.0358 (2)0.00143 (13)0.00419 (15)0.00054 (13)
O10.064 (3)0.057 (3)0.052 (2)0.005 (2)0.019 (2)0.003 (2)
O20.068 (3)0.066 (3)0.050 (3)0.008 (2)0.019 (2)0.014 (2)
O40.074 (3)0.047 (3)0.047 (2)0.003 (2)0.014 (2)0.008 (2)
O50.091 (4)0.067 (3)0.045 (3)0.029 (3)0.021 (2)0.000 (2)
O70.049 (2)0.047 (3)0.057 (3)0.003 (2)0.0016 (19)0.003 (2)
O80.056 (3)0.061 (3)0.053 (3)0.003 (2)0.002 (2)0.007 (2)
N10.054 (3)0.056 (3)0.058 (3)0.005 (3)0.006 (3)0.005 (3)
N20.066 (4)0.054 (4)0.042 (3)0.004 (3)0.003 (3)0.002 (2)
C10.064 (5)0.094 (7)0.062 (5)0.009 (4)0.017 (4)0.002 (4)
C20.057 (5)0.147 (10)0.087 (7)0.003 (5)0.025 (5)0.016 (6)
C30.054 (5)0.123 (10)0.129 (10)0.005 (5)0.023 (6)0.013 (7)
C40.057 (5)0.105 (7)0.088 (7)0.007 (5)0.005 (4)0.022 (6)
C50.062 (4)0.042 (4)0.073 (5)0.007 (3)0.007 (3)0.007 (3)
C60.055 (6)0.207 (17)0.137 (12)0.001 (7)0.004 (6)0.023 (10)
C70.074 (6)0.153 (10)0.079 (6)0.043 (6)0.022 (5)0.007 (6)
C80.082 (6)0.081 (5)0.062 (5)0.020 (5)0.018 (4)0.010 (4)
C90.067 (4)0.049 (4)0.050 (4)0.001 (3)0.009 (3)0.007 (3)
C100.119 (8)0.091 (7)0.055 (5)0.016 (6)0.015 (5)0.002 (4)
C110.130 (8)0.090 (7)0.043 (4)0.001 (6)0.003 (5)0.014 (4)
C120.091 (6)0.060 (5)0.055 (4)0.003 (4)0.006 (4)0.009 (3)
C130.054 (4)0.045 (4)0.050 (4)0.005 (3)0.012 (3)0.001 (3)
C140.061 (2)0.063 (3)0.053 (2)0.0072 (19)0.0242 (18)0.0129 (18)
C150.061 (2)0.063 (3)0.053 (2)0.0072 (19)0.0242 (18)0.0129 (18)
C160.061 (2)0.063 (3)0.053 (2)0.0072 (19)0.0242 (18)0.0129 (18)
C170.093 (6)0.121 (8)0.083 (6)0.008 (6)0.047 (5)0.001 (5)
C180.093 (7)0.125 (10)0.121 (8)0.009 (6)0.057 (6)0.007 (7)
C190.151 (10)0.096 (8)0.151 (10)0.015 (7)0.111 (9)0.004 (7)
C200.165 (11)0.123 (9)0.107 (8)0.021 (9)0.087 (9)0.038 (7)
C210.113 (7)0.099 (7)0.098 (7)0.000 (6)0.066 (6)0.017 (6)
C220.064 (4)0.039 (4)0.053 (4)0.002 (3)0.016 (3)0.001 (3)
C230.074 (2)0.052 (2)0.0390 (18)0.0157 (18)0.0188 (17)0.0037 (15)
C240.074 (2)0.052 (2)0.0390 (18)0.0157 (18)0.0188 (17)0.0037 (15)
C250.074 (2)0.052 (2)0.0390 (18)0.0157 (18)0.0188 (17)0.0037 (15)
C260.084 (5)0.110 (7)0.063 (5)0.039 (5)0.026 (4)0.013 (5)
C270.157 (11)0.167 (11)0.066 (6)0.065 (9)0.052 (7)0.010 (7)
C280.132 (9)0.155 (11)0.069 (6)0.014 (8)0.049 (6)0.016 (7)
C290.130 (8)0.117 (8)0.053 (5)0.017 (7)0.018 (5)0.002 (5)
C300.092 (6)0.092 (6)0.060 (5)0.030 (5)0.016 (4)0.014 (4)
C310.050 (3)0.062 (4)0.039 (3)0.002 (3)0.005 (3)0.001 (3)
C320.060 (4)0.061 (5)0.060 (4)0.011 (3)0.007 (3)0.006 (3)
C330.108 (3)0.091 (3)0.135 (4)0.000 (2)0.044 (3)0.017 (3)
C340.108 (3)0.091 (3)0.135 (4)0.000 (2)0.044 (3)0.017 (3)
C350.108 (3)0.091 (3)0.135 (4)0.000 (2)0.044 (3)0.017 (3)
C360.108 (3)0.091 (3)0.135 (4)0.000 (2)0.044 (3)0.017 (3)
C370.108 (3)0.091 (3)0.135 (4)0.000 (2)0.044 (3)0.017 (3)
C380.108 (3)0.091 (3)0.135 (4)0.000 (2)0.044 (3)0.017 (3)
C390.108 (3)0.091 (3)0.135 (4)0.000 (2)0.044 (3)0.017 (3)
Geometric parameters (Å, º) top
La1—O12.504 (4)C15—H15B0.9700
La1—O42.478 (4)C16—C171.341 (11)
La1—O72.615 (4)C16—C211.401 (11)
La1—O82.908 (6)C17—C181.419 (13)
La1—N12.717 (6)C17—H170.9300
La1—N22.749 (5)C18—C191.396 (16)
La1—O8i2.440 (5)C18—H180.9300
La1—O2i2.566 (4)C19—C201.317 (15)
La1—O5ii2.570 (4)C19—H190.9300
O1—C131.237 (7)C20—C211.429 (12)
O2—C131.276 (7)C20—H200.9300
O2—La1i2.566 (4)C21—H210.9300
O4—C221.275 (8)C22—C231.524 (8)
O5—C221.250 (8)C23—C241.448 (8)
O5—La1ii2.570 (4)C23—H23B0.9700
O7—C311.263 (8)C23—H23A0.9700
O8—C311.295 (8)C24—C251.366 (8)
O8—La1i2.440 (5)C24—H24A0.9700
N1—C11.344 (10)C24—H24B0.9700
N1—C51.367 (9)C25—C261.374 (10)
N2—C91.345 (10)C25—C301.425 (9)
N2—C121.346 (9)C26—C271.397 (12)
C1—C21.365 (11)C26—H260.9300
C1—H10.9300C27—C281.391 (15)
C2—C31.402 (15)C27—H270.9300
C2—H20.9300C28—C291.381 (14)
C3—C41.390 (14)C28—H280.9300
C3—H30.9300C29—C301.397 (11)
C4—C51.404 (11)C29—H290.9300
C4—C61.483 (15)C30—H300.9300
C5—C91.453 (11)C31—C321.521 (10)
C6—C71.458 (16)C32—C331.376 (13)
C6—H60.9300C32—H32A0.9700
C7—C81.385 (14)C32—H32B0.9700
C7—H70.9300C33—C341.319 (16)
C8—C101.412 (13)C33—H33A0.9700
C8—C91.444 (10)C33—H33B0.9700
C10—C111.332 (12)C34—C391.390 (16)
C10—H100.9300C34—C351.430 (18)
C11—C121.407 (11)C35—C361.467 (15)
C11—H110.9300C35—H350.9300
C12—H120.9300C36—C371.335 (15)
C13—C141.527 (8)C36—H360.9300
C14—C151.400 (8)C37—C381.309 (16)
C14—H14A0.9700C37—H370.9300
C14—H14B0.9700C38—C391.354 (15)
C15—C161.370 (8)C38—H380.9300
C15—H15A0.9700C39—H390.9300
O1—La1—O4146.17 (15)C13—C14—H14B109.7
O1—La1—O771.74 (14)H14A—C14—H14B108.2
O1—La1—O864.45 (14)C16—C15—C14116.7 (6)
O4—La1—O7140.47 (15)C16—C15—H15A108.1
O4—La1—O8140.10 (13)C14—C15—H15A108.1
O7—La1—O847.01 (13)C16—C15—H15B108.1
O1—La1—N1126.56 (16)C14—C15—H15B108.1
O4—La1—N177.48 (16)H15A—C15—H15B107.3
O7—La1—N164.84 (16)C17—C16—C15113.1 (7)
O8—La1—N1102.67 (16)C17—C16—C21122.8 (7)
O1—La1—N280.59 (16)C15—C16—C21124.1 (7)
O4—La1—N296.40 (15)C16—C17—C18118.1 (10)
O7—La1—N275.47 (15)C16—C17—H17121.0
O8—La1—N2118.56 (14)C18—C17—H17121.0
N1—La1—N259.97 (18)C19—C18—C17119.4 (10)
O8i—La1—O487.64 (17)C19—C18—H18120.3
O8i—La1—O179.22 (15)C17—C18—H18120.3
O8i—La1—O2i72.78 (15)C20—C19—C18122.0 (10)
O4—La1—O2i76.59 (15)C20—C19—H19119.0
O1—La1—O2i127.14 (16)C18—C19—H19119.0
O8i—La1—O5ii80.04 (17)C19—C20—C21119.9 (11)
O4—La1—O5ii75.77 (15)C19—C20—H20120.1
O1—La1—O5ii71.35 (15)C21—C20—H20120.1
O2i—La1—O5ii141.66 (15)C16—C21—C20117.6 (9)
O8i—La1—O7119.25 (17)C16—C21—H21121.2
O2i—La1—O784.17 (15)C20—C21—H21121.2
O5ii—La1—O7133.41 (14)O5—C22—O4128.5 (6)
O8i—La1—N1149.81 (16)O5—C22—C23118.2 (6)
O2i—La1—N178.24 (16)O4—C22—C23113.2 (5)
O5ii—La1—N1120.31 (18)C24—C23—C22112.2 (5)
O8i—La1—N2149.02 (17)C24—C23—H23B109.2
O2i—La1—N2138.05 (17)C22—C23—H23B109.2
O5ii—La1—N271.35 (17)C24—C23—H23A109.2
O8i—La1—O872.45 (18)C22—C23—H23A109.2
O2i—La1—O864.71 (14)H23B—C23—H23A107.9
O5ii—La1—O8131.14 (15)C25—C24—C23118.9 (6)
C13—O1—La1129.9 (4)C25—C24—H24A107.6
C13—O2—La1i138.8 (4)C23—C24—H24A107.6
C22—O4—La1151.8 (4)C25—C24—H24B107.6
C22—O5—La1ii148.9 (4)C23—C24—H24B107.6
C31—O7—La1103.6 (4)H24A—C24—H24B107.0
C31—O8—La1i161.9 (5)C24—C25—C26123.2 (6)
C31—O8—La188.9 (4)C24—C25—C30115.9 (6)
La1i—O8—La1107.55 (18)C26—C25—C30121.0 (6)
C1—N1—C5119.5 (6)C25—C26—C27118.4 (8)
C1—N1—La1118.8 (5)C25—C26—H26120.8
C5—N1—La1120.1 (5)C27—C26—H26120.8
C9—N2—C12115.9 (6)C28—C27—C26121.2 (10)
C9—N2—La1122.0 (4)C28—C27—H27119.4
C12—N2—La1121.7 (5)C26—C27—H27119.4
N1—C1—C2121.9 (8)C29—C28—C27120.6 (9)
N1—C1—H1119.0C29—C28—H28119.7
C2—C1—H1119.0C27—C28—H28119.7
C1—C2—C3118.3 (9)C28—C29—C30119.2 (9)
C1—C2—H2120.9C28—C29—H29120.4
C3—C2—H2120.9C30—C29—H29120.4
C4—C3—C2122.2 (9)C29—C30—C25119.4 (8)
C4—C3—H3118.9C29—C30—H30120.3
C2—C3—H3118.9C25—C30—H30120.3
C3—C4—C5115.3 (8)O7—C31—O8120.3 (6)
C3—C4—C6121.5 (9)O7—C31—C32122.1 (6)
C5—C4—C6123.2 (10)O8—C31—C32117.6 (6)
N1—C5—C4122.9 (8)C33—C32—C31115.8 (7)
N1—C5—C9119.9 (6)C33—C32—H32A108.3
C4—C5—C9117.2 (7)C31—C32—H32A108.3
C7—C6—C4117.3 (9)C33—C32—H32B108.3
C7—C6—H6121.3C31—C32—H32B108.3
C4—C6—H6121.3H32A—C32—H32B107.4
C8—C7—C6119.4 (8)C34—C33—C32117.2 (12)
C8—C7—H7120.3C34—C33—H33A108.0
C6—C7—H7120.3C32—C33—H33A108.0
C7—C8—C10121.0 (9)C34—C33—H33B108.0
C7—C8—C9122.7 (9)C32—C33—H33B108.0
C10—C8—C9116.3 (8)H33A—C33—H33B107.2
N2—C9—C8123.7 (8)C33—C34—C39113.2 (14)
N2—C9—C5116.3 (6)C33—C34—C35125.2 (13)
C8—C9—C5120.1 (8)C39—C34—C35121.6 (12)
C11—C10—C8120.2 (8)C34—C35—C36115.5 (12)
C11—C10—H10119.9C34—C35—H35122.2
C8—C10—H10119.9C36—C35—H35122.2
C10—C11—C12119.4 (9)C37—C36—C35115.6 (13)
C10—C11—H11120.3C37—C36—H36122.2
C12—C11—H11120.3C35—C36—H36122.2
N2—C12—C11124.2 (9)C38—C37—C36129.3 (13)
N2—C12—H12117.9C38—C37—H37115.3
C11—C12—H12117.9C36—C37—H37115.3
O1—C13—O2128.8 (6)C37—C38—C39117.9 (13)
O1—C13—C14110.8 (5)C37—C38—H38121.1
O2—C13—C14120.3 (6)C39—C38—H38121.1
C15—C14—C13109.6 (5)C38—C39—C34119.8 (14)
C15—C14—H14A109.7C38—C39—H39120.1
C13—C14—H14A109.7C34—C39—H39120.1
C15—C14—H14B109.7
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.443.138 (10)132
C12—H12···O5ii0.932.533.087 (9)119
C32—H32B···O4iii0.972.483.435 (9)167
C10—H10···O7iv0.932.393.279 (9)159
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x, y1, z; (iv) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[La(C9H9O2)3(C12H8N2)]
Mr766.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)19.904 (3), 8.783 (5), 21.012 (2)
β (°) 106.163 (2)
V3)3528 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.33 × 0.12 × 0.08
Data collection
DiffractometerBruker APE XII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.682, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
26367, 7231, 4916
Rint0.042
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.171, 0.96
No. of reflections7231
No. of parameters373
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 1.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.443.138 (10)132
C12—H12···O5ii0.932.533.087 (9)119
C32—H32B···O4iii0.972.483.435 (9)167
C10—H10···O7iv0.932.393.279 (9)159
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x, y1, z; (iv) x+3/2, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds