Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystals of the title compound, C14H9ClO3, are stabilized by O—H...O and C—H...O hydrogen bonds and C—H...π inter­actions. O—H...O hydrogen bonds generate centrosymmetric dimers. O—H...O and two C—H...O hydrogen bonds generate spiro­cyclic R22(8)R21(5) ring motifs. The R22(8) and R21(5) ring motifs are connected to each other by C(6) chains and C—H...π inter­actions. The dihedral angle between the aromatic rings is 88.07 (11)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026554/at2314sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026554/at2314Isup2.hkl
Contains datablock I

CCDC reference: 654942

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.110
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.72 mm PLAT127_ALERT_1_C Implicit Hall Symbol Inconsistent with Explicit -P 2yc PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12 PLAT480_ALERT_4_C Long H...A H-Bond Reported H3 .. O1 .. 2.85 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H4 .. O1 .. 2.65 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5 .. O3 .. 2.83 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The present work is part of a structural study of carbonyl compounds (Odabaşoğlu & Büyükgüngör, 2006) and we report here the structure of 3-(4-ethoxyanilino)isobenzofuran-1(3H)-one, (I), Fig. 1, Table 1. The dihedral angle between aromatic rings is 88.07 (11)°. The bond lengths and angles are in normal ranges, and comparable with in our previous work on carbonyl compounds (Büyükgüngör & Odabaşoğlu, 2006; Odabaşoğlu & Büyükgüngör, 2006; Odabaşoğlu et al., 2006; Odabaşoğlu et al., 2005; Ersanlı et al., 2005; Allen et al., 1987). The C2—O1 bond distance in (I) is also consistent with the value of the C=O double bond in carbonyl compounds (Loudon, 2002).

The title compound, I, are stabilized by one O—H···O, three C—H···O intermolecular hydrogen bonds and one C—H···π interactions. O—H···O hydrogen bonds generate centrocymmetric dimers. O—H···O and two C—H···O hydrogenbonds generate spirocyclic R22(8)R21(5) ring motifs (Etter, 1990) these motifs are connected by C(6) chains and C—H···π interactions (Fig. 2 and 3).

Related literature top

For related structures, see: Allen et al. (1987); Odabaşoğlu et al. (2005); Büyükgüngör & Odabaşoğlu (2006); Odabaşoğlu & Büyükgüngör (2006); Odabaşoğlu et al. (2006); Ersanlı et al. (2005); Etter (1990); Loudon (2002); Sheldrick (1990).

Experimental top

A pure sample of the compound was obtained from Alfa Aeser GmbH & Co KG, Germany, and crystallized by slow evaporation of a solution in ethyl DMF-H2O (1:1 v/v) solution at room temperature, m.p. 425–425 K.

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.93 for aromatic, d(C—H) = 0.98 Å for methine and d(C—O)=0.82 Å for hydroxy and thereafter treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached C atoms (1.5 for O)

Structure description top

The present work is part of a structural study of carbonyl compounds (Odabaşoğlu & Büyükgüngör, 2006) and we report here the structure of 3-(4-ethoxyanilino)isobenzofuran-1(3H)-one, (I), Fig. 1, Table 1. The dihedral angle between aromatic rings is 88.07 (11)°. The bond lengths and angles are in normal ranges, and comparable with in our previous work on carbonyl compounds (Büyükgüngör & Odabaşoğlu, 2006; Odabaşoğlu & Büyükgüngör, 2006; Odabaşoğlu et al., 2006; Odabaşoğlu et al., 2005; Ersanlı et al., 2005; Allen et al., 1987). The C2—O1 bond distance in (I) is also consistent with the value of the C=O double bond in carbonyl compounds (Loudon, 2002).

The title compound, I, are stabilized by one O—H···O, three C—H···O intermolecular hydrogen bonds and one C—H···π interactions. O—H···O hydrogen bonds generate centrocymmetric dimers. O—H···O and two C—H···O hydrogenbonds generate spirocyclic R22(8)R21(5) ring motifs (Etter, 1990) these motifs are connected by C(6) chains and C—H···π interactions (Fig. 2 and 3).

For related structures, see: Allen et al. (1987); Odabaşoğlu et al. (2005); Büyükgüngör & Odabaşoğlu (2006); Odabaşoğlu & Büyükgüngör (2006); Odabaşoğlu et al. (2006); Ersanlı et al. (2005); Etter (1990); Loudon (2002); Sheldrick (1990).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The R22(8)R21(5) ring motifs and π···π interactions of (I), with C For the sake of clarity, H atoms not involved in the hydrogen bonding motifs shown have been omitted; hydrogen bonds are drawn as dashed lines. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) x - 1/2, y, z + 1/2].
[Figure 3] Fig. 3. The C(6) chain and R21(5) ring of (I),, with C For the sake of clarity, H atoms not involved in the hydrogen bonding motifs shown have been omitted; hydrogen bonds are drawn as dashed lines. [Symmetry codes: (i) x, 1/2 - y, z - 1/2; (ii) x, 1/2 - y, z + 1/2; (iii) -x, 1 - y, 1 - z].
2-(4-Chlorobenzoyl)benzoic acid top
Crystal data top
C14H9ClO3F(000) = 536
Mr = 260.66Dx = 1.394 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 6666 reflections
a = 15.3209 (17) Åθ = 2.1–27.9°
b = 7.3171 (6) ŵ = 0.30 mm1
c = 11.1988 (14) ÅT = 296 K
β = 98.467 (10)°Prism, colorless
V = 1241.8 (2) Å30.72 × 0.44 × 0.27 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
2381 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1611 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.030
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 1815
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 99
Tmin = 0.839, Tmax = 0.919l = 1313
6666 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.074P]
where P = (Fo2 + 2Fc2)/3
2381 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H9ClO3V = 1241.8 (2) Å3
Mr = 260.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3209 (17) ŵ = 0.30 mm1
b = 7.3171 (6) ÅT = 296 K
c = 11.1988 (14) Å0.72 × 0.44 × 0.27 mm
β = 98.467 (10)°
Data collection top
Stoe IPDSII
diffractometer
2381 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
1611 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.919Rint = 0.030
6666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
2381 reflectionsΔρmin = 0.26 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17454 (12)0.0458 (2)0.56843 (15)0.0466 (4)
C20.10791 (12)0.0997 (2)0.47700 (15)0.0438 (4)
C30.08082 (13)0.0174 (2)0.38059 (16)0.0520 (5)
H30.03570.01820.32020.062*
C40.12036 (14)0.1853 (3)0.37402 (19)0.0585 (5)
H40.10270.26190.30860.070*
C50.18558 (16)0.2393 (2)0.46361 (19)0.0627 (6)
H50.21190.35320.45950.075*
C60.21235 (14)0.1254 (2)0.55999 (18)0.0593 (5)
H60.25660.16390.62060.071*
C70.06322 (12)0.2779 (2)0.48544 (15)0.0449 (4)
C80.20686 (13)0.1576 (2)0.67855 (16)0.0518 (5)
C90.27299 (12)0.3042 (2)0.67000 (16)0.0509 (5)
C100.31668 (15)0.3224 (3)0.5719 (2)0.0702 (6)
H100.30370.24250.50710.084*
C110.37936 (17)0.4568 (4)0.5675 (3)0.0861 (8)
H110.40890.46720.50090.103*
C120.39722 (16)0.5748 (3)0.6631 (3)0.0802 (7)
C130.35424 (16)0.5614 (3)0.7606 (2)0.0742 (7)
H130.36680.64300.82450.089*
C140.29228 (15)0.4270 (3)0.76445 (18)0.0624 (6)
H140.26290.41820.83120.075*
O10.00022 (9)0.31239 (18)0.39744 (11)0.0607 (4)
H10.02130.41260.40810.091*
O20.08373 (9)0.38031 (16)0.57144 (11)0.0551 (4)
O30.18427 (12)0.1185 (2)0.77436 (12)0.0769 (5)
Cl10.47438 (7)0.74585 (13)0.65780 (11)0.1428 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0519 (11)0.0417 (9)0.0464 (9)0.0039 (8)0.0078 (8)0.0043 (7)
C20.0461 (10)0.0415 (8)0.0445 (9)0.0030 (7)0.0087 (8)0.0046 (7)
C30.0540 (12)0.0511 (10)0.0504 (10)0.0019 (8)0.0059 (8)0.0005 (8)
C40.0668 (14)0.0475 (10)0.0611 (12)0.0015 (9)0.0089 (10)0.0075 (9)
C50.0741 (15)0.0390 (9)0.0757 (14)0.0078 (9)0.0126 (11)0.0009 (9)
C60.0658 (14)0.0473 (10)0.0624 (12)0.0133 (9)0.0008 (10)0.0096 (9)
C70.0468 (11)0.0457 (9)0.0424 (9)0.0042 (7)0.0074 (7)0.0054 (8)
C80.0603 (13)0.0490 (10)0.0446 (10)0.0136 (8)0.0027 (9)0.0060 (8)
C90.0491 (11)0.0557 (10)0.0443 (10)0.0116 (8)0.0055 (8)0.0032 (8)
C100.0603 (14)0.0828 (15)0.0676 (13)0.0109 (12)0.0097 (10)0.0228 (11)
C110.0650 (16)0.0989 (18)0.0979 (18)0.0186 (14)0.0237 (13)0.0207 (15)
C120.0492 (14)0.0755 (15)0.112 (2)0.0041 (11)0.0013 (13)0.0195 (14)
C130.0692 (16)0.0642 (13)0.0816 (15)0.0087 (11)0.0145 (12)0.0217 (11)
C140.0726 (15)0.0596 (12)0.0510 (11)0.0146 (10)0.0039 (10)0.0042 (9)
O10.0658 (10)0.0594 (7)0.0523 (8)0.0217 (7)0.0062 (6)0.0014 (6)
O20.0574 (9)0.0466 (7)0.0574 (8)0.0108 (6)0.0048 (6)0.0061 (6)
O30.1141 (14)0.0690 (9)0.0496 (8)0.0006 (8)0.0187 (8)0.0079 (7)
Cl10.0970 (7)0.1214 (7)0.2131 (11)0.0513 (5)0.0328 (7)0.0505 (7)
Geometric parameters (Å, º) top
C1—C61.389 (3)C8—O31.209 (2)
C1—C21.392 (2)C8—C91.488 (3)
C1—C81.502 (2)C9—C101.375 (3)
C2—C31.393 (2)C9—C141.386 (3)
C2—C71.483 (2)C10—C111.381 (3)
C3—C41.377 (3)C10—H100.9300
C3—H30.9300C11—C121.371 (3)
C4—C51.366 (3)C11—H110.9300
C4—H40.9300C12—C131.359 (4)
C5—C61.378 (3)C12—Cl11.729 (3)
C5—H50.9300C13—C141.372 (3)
C6—H60.9300C13—H130.9300
C7—O21.224 (2)C14—H140.9300
C7—O11.299 (2)O1—H10.8200
C6—C1—C2118.24 (16)O3—C8—C1119.80 (18)
C6—C1—C8117.17 (16)C9—C8—C1119.02 (16)
C2—C1—C8124.56 (15)C10—C9—C14118.2 (2)
C1—C2—C3119.93 (16)C10—C9—C8122.50 (17)
C1—C2—C7119.84 (15)C14—C9—C8119.27 (18)
C3—C2—C7120.17 (16)C9—C10—C11121.4 (2)
C4—C3—C2120.46 (18)C9—C10—H10119.3
C4—C3—H3119.8C11—C10—H10119.3
C2—C3—H3119.8C12—C11—C10118.7 (2)
C5—C4—C3119.95 (18)C12—C11—H11120.6
C5—C4—H4120.0C10—C11—H11120.6
C3—C4—H4120.0C13—C12—C11121.2 (2)
C4—C5—C6120.09 (17)C13—C12—Cl1119.6 (2)
C4—C5—H5120.0C11—C12—Cl1119.2 (2)
C6—C5—H5120.0C12—C13—C14119.8 (2)
C5—C6—C1121.33 (18)C12—C13—H13120.1
C5—C6—H6119.3C14—C13—H13120.1
C1—C6—H6119.3C13—C14—C9120.8 (2)
O2—C7—O1123.66 (15)C13—C14—H14119.6
O2—C7—C2121.41 (15)C9—C14—H14119.6
O1—C7—C2114.90 (15)C7—O1—H1109.5
O3—C8—C9120.93 (17)
C6—C1—C2—C30.1 (3)C6—C1—C8—C999.6 (2)
C8—C1—C2—C3177.79 (17)C2—C1—C8—C982.5 (2)
C6—C1—C2—C7177.32 (17)O3—C8—C9—C10163.2 (2)
C8—C1—C2—C70.6 (3)C1—C8—C9—C1011.0 (3)
C1—C2—C3—C40.9 (3)O3—C8—C9—C1416.3 (3)
C7—C2—C3—C4178.14 (17)C1—C8—C9—C14169.48 (16)
C2—C3—C4—C51.2 (3)C14—C9—C10—C111.1 (3)
C3—C4—C5—C60.6 (3)C8—C9—C10—C11178.4 (2)
C4—C5—C6—C10.3 (3)C9—C10—C11—C120.6 (4)
C2—C1—C6—C50.5 (3)C10—C11—C12—C130.2 (4)
C8—C1—C6—C5178.56 (19)C10—C11—C12—Cl1179.1 (2)
C1—C2—C7—O20.2 (3)C11—C12—C13—C140.5 (4)
C3—C2—C7—O2177.39 (18)Cl1—C12—C13—C14179.28 (17)
C1—C2—C7—O1177.92 (16)C12—C13—C14—C90.1 (3)
C3—C2—C7—O10.7 (2)C10—C9—C14—C130.9 (3)
C6—C1—C8—O374.7 (2)C8—C9—C14—C13178.60 (18)
C2—C1—C8—O3103.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.6389 (17)172
C3—H3···O1ii0.932.853.413 (2)120
C4—H4···O1ii0.932.653.317 (2)129
C5—H5···O3iii0.932.833.489 (2)129
C14—H14···Cgiii0.932.773.592 (2)149
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H9ClO3
Mr260.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.3209 (17), 7.3171 (6), 11.1988 (14)
β (°) 98.467 (10)
V3)1241.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.72 × 0.44 × 0.27
Data collection
DiffractometerStoe IPDSII
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.839, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
6666, 2381, 1611
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.04
No. of reflections2381
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.26

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.6389 (17)172.2
C3—H3···O1ii0.932.853.413 (2)120.2
C4—H4···O1ii0.932.653.317 (2)128.9
C5—H5···O3iii0.932.833.489 (2)129.2
C14—H14···Cgiii0.932.7663.592 (2)148.59
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds