Download citation
Download citation
link to html
The CeIV atom in the title complex, [Ce(NO3)4(C11H9N)2], is ten-coordinated by two N atoms of 4-phenyl­pyridine ligands and eight O atoms of four NO3 ligands. The Ce atom lies on a crystallographic twofold rotation axis. The Ce—O bond lengths are in the range 2.466 (2)–2.559 (3) Å. The Ce—N bond length is 2.623 (3) Å. C—H...O hydrogen bonds link the mononuclear complex into a supra­molecular network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018831/at2273sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018831/at2273Isup2.hkl
Contains datablock I

CCDC reference: 1124759

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • R factor = 0.022
  • wR factor = 0.072
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Molecular magnetic compounds, such as molecular ferro- and ferrimagnets, organic magnets, single-molecule magnets and high-spin molecules, have recently attracted attention (Miller & Drillon, 2001a,b, 2002). Owing to Lanthanide metals unique physical and chemical properties, Lanthanide complexes play an important role in special materials having optical, electronic, magnetic and biological importance (Benelli et al., 1992; Deborah et al., 2000; Farrugia et al., 2000). More importantly, since the removal of lanthanides from radioactive high level liquid waste (HLLW) has been shown to improve the transmutation of long-lived transuranic elements to shortlived or even stable nuclides (Modolo & Odoj, 1998), the coordination chemistry of the 4f metals continues to attract interest. We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The irregular ten-coordinate environment of the Ce atom is completed by The two N atoms of 4-phenylpyridine ligands and eight O atoms of four NO3- (Table 1). The Ce—O bond lengths are in the range 2.466 (2) to 2.559 (3) Å. The Ce—N bond length is 2.623 (3) Å. The C—H···O hydrogen bonds link the mononuclear complex into a supramolecular network structure (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Benelli et al. (1992); Deborah et al. (2000); Farrugia et al. (2000); Miller & Drillon (2001a,b, 2002); Modolo & Odoj (1998).

Experimental top

Crystals of the title compound (I) were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Ammonium cerium(IV) nitrate (109.6 mg, 0.2 mmol), 4-phenylpyridine (94.2 mg, 0.6 mmol), and distilled water (5.5 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure for 7 d at 393 K and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature. Powder X-ray diffraction was conducted on the sample.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Molecular magnetic compounds, such as molecular ferro- and ferrimagnets, organic magnets, single-molecule magnets and high-spin molecules, have recently attracted attention (Miller & Drillon, 2001a,b, 2002). Owing to Lanthanide metals unique physical and chemical properties, Lanthanide complexes play an important role in special materials having optical, electronic, magnetic and biological importance (Benelli et al., 1992; Deborah et al., 2000; Farrugia et al., 2000). More importantly, since the removal of lanthanides from radioactive high level liquid waste (HLLW) has been shown to improve the transmutation of long-lived transuranic elements to shortlived or even stable nuclides (Modolo & Odoj, 1998), the coordination chemistry of the 4f metals continues to attract interest. We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The irregular ten-coordinate environment of the Ce atom is completed by The two N atoms of 4-phenylpyridine ligands and eight O atoms of four NO3- (Table 1). The Ce—O bond lengths are in the range 2.466 (2) to 2.559 (3) Å. The Ce—N bond length is 2.623 (3) Å. The C—H···O hydrogen bonds link the mononuclear complex into a supramolecular network structure (Fig. 2).

For related literature, see: Allen et al. (1987); Benelli et al. (1992); Deborah et al. (2000); Farrugia et al. (2000); Miller & Drillon (2001a,b, 2002); Modolo & Odoj (1998).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A, B, C are generated by the symmetry operation (2 - x, y, 1 - z).
[Figure 2] Fig. 2. A packing diagram of (I).
Tetrakis(nitrato-κ2O,O')bis(4-phenylpyridine-κN)cerium(IV) top
Crystal data top
[Ce(NO3)4(C11H9N)2]F(000) = 1384
Mr = 698.54Dx = 1.840 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8223 reflections
a = 20.136 (5) Åθ = 2.5–29.5°
b = 7.8079 (14) ŵ = 1.88 mm1
c = 18.310 (3) ÅT = 273 K
β = 118.834 (2)°Plane, colourless
V = 2521.8 (9) Å30.40 × 0.33 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII area-detector diffracmeter
diffractometer
2399 independent reflections
Radiation source: fine-focus sealed tube2357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.520, Tmax = 0.697k = 99
7911 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0526P)2 + 2.9178P]
where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Ce(NO3)4(C11H9N)2]V = 2521.8 (9) Å3
Mr = 698.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.136 (5) ŵ = 1.88 mm1
b = 7.8079 (14) ÅT = 273 K
c = 18.310 (3) Å0.40 × 0.33 × 0.21 mm
β = 118.834 (2)°
Data collection top
Bruker APEXII area-detector diffracmeter
diffractometer
2399 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2357 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.697Rint = 0.014
7911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.09Δρmax = 0.47 e Å3
2399 reflectionsΔρmin = 0.56 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce11.00000.33853 (2)0.75000.03059 (10)
O11.09210 (13)0.4420 (3)0.89004 (15)0.0554 (6)
O21.0830 (2)0.4125 (4)1.00259 (16)0.0799 (9)
O30.99757 (16)0.3044 (3)0.88530 (17)0.0565 (6)
O40.92865 (16)0.0722 (3)0.66855 (18)0.0644 (7)
O50.81814 (17)0.0034 (4)0.65278 (19)0.0721 (8)
O60.87792 (15)0.2150 (3)0.72861 (17)0.0554 (6)
N11.05815 (18)0.3856 (4)0.92892 (18)0.0502 (6)
N20.87318 (16)0.0900 (3)0.68174 (17)0.0476 (6)
N30.93564 (16)0.6015 (4)0.77990 (17)0.0469 (6)
C10.9748 (2)0.7369 (4)0.8260 (2)0.0483 (7)
H11.02400.75270.83520.058*
C20.9466 (2)0.8531 (4)0.8603 (2)0.0464 (8)
H20.97590.94590.89060.056*
C30.8644 (2)0.5862 (5)0.7672 (2)0.0519 (8)
H30.83520.49650.73380.062*
C40.8318 (2)0.6940 (4)0.8001 (2)0.0487 (7)
H40.78230.67590.78970.058*
C50.8740 (2)0.8310 (3)0.8495 (2)0.0413 (7)
C60.84234 (18)0.9443 (4)0.89047 (18)0.0417 (6)
C70.7944 (2)0.8786 (5)0.9183 (2)0.0468 (7)
H70.78180.76300.91190.056*
C80.7659 (2)0.9873 (5)0.9556 (2)0.0524 (8)
H80.73410.94300.97460.063*
C90.7821 (2)1.1523 (4)0.9654 (2)0.0432 (7)
H90.76141.22250.99030.052*
C100.8275 (3)1.2170 (5)0.9399 (3)0.0652 (10)
H100.83821.33360.94690.078*
C110.8601 (2)1.1179 (5)0.9030 (3)0.0584 (9)
H110.89321.16630.88690.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.03366 (14)0.02779 (14)0.03943 (14)0.0000.02487 (11)0.000
O10.0484 (13)0.0571 (14)0.0632 (14)0.0087 (11)0.0289 (11)0.0003 (11)
O20.106 (2)0.077 (2)0.0445 (14)0.0077 (18)0.0270 (14)0.0024 (13)
O30.0604 (16)0.0609 (13)0.0585 (14)0.0146 (12)0.0369 (13)0.0036 (12)
O40.0678 (16)0.0518 (14)0.0884 (18)0.0028 (12)0.0495 (15)0.0157 (13)
O50.0679 (17)0.0646 (17)0.0759 (17)0.0294 (14)0.0283 (14)0.0158 (13)
O60.0596 (15)0.0489 (13)0.0705 (15)0.0100 (11)0.0416 (13)0.0151 (12)
N10.0571 (17)0.0455 (14)0.0483 (15)0.0011 (13)0.0258 (13)0.0023 (12)
N20.0519 (15)0.0403 (14)0.0519 (14)0.0053 (12)0.0259 (12)0.0023 (12)
N30.0549 (16)0.0443 (14)0.0548 (15)0.0022 (12)0.0370 (13)0.0024 (12)
C10.0545 (19)0.0411 (16)0.0655 (19)0.0035 (14)0.0418 (16)0.0038 (14)
C20.053 (2)0.0409 (16)0.0591 (19)0.0054 (12)0.0376 (17)0.0061 (12)
C30.0501 (18)0.0512 (19)0.0571 (18)0.0017 (14)0.0279 (15)0.0135 (15)
C40.0438 (17)0.0520 (17)0.0537 (18)0.0007 (14)0.0262 (15)0.0096 (15)
C50.0460 (18)0.0403 (17)0.0459 (16)0.0036 (11)0.0288 (14)0.0013 (11)
C60.0442 (15)0.0415 (15)0.0450 (14)0.0024 (12)0.0259 (12)0.0011 (12)
C70.0472 (17)0.0460 (15)0.0560 (18)0.0019 (14)0.0318 (15)0.0066 (14)
C80.0498 (17)0.061 (2)0.0587 (18)0.0003 (15)0.0363 (15)0.0027 (15)
C90.0468 (18)0.0441 (18)0.0518 (17)0.0054 (11)0.0342 (15)0.0109 (12)
C100.085 (3)0.0458 (18)0.091 (3)0.0031 (19)0.063 (2)0.0130 (19)
C110.076 (3)0.0427 (16)0.085 (3)0.0056 (17)0.062 (2)0.0095 (17)
Geometric parameters (Å, º) top
Ce1—O12.466 (2)C1—C21.373 (4)
Ce1—O32.515 (3)C1—H10.9300
Ce1—O42.559 (3)C2—C51.387 (5)
Ce1—O62.490 (3)C2—H20.9300
Ce1—N32.623 (3)C3—C41.373 (5)
Ce1—O1i2.466 (2)C3—H30.9300
Ce1—O6i2.490 (3)C4—C51.394 (5)
Ce1—O3i2.515 (3)C4—H40.9300
Ce1—O4i2.559 (3)C5—C61.488 (4)
Ce1—N3i2.623 (3)C6—C71.389 (5)
Ce1—N1i2.922 (3)C6—C111.393 (5)
Ce1—N2i2.962 (3)C7—C81.376 (5)
O1—N11.279 (4)C7—H70.9300
O2—N11.210 (4)C8—C91.319 (5)
O3—N11.260 (4)C8—H80.9300
O4—N21.259 (4)C9—C101.312 (5)
O5—N21.214 (4)C9—H90.9300
O6—N21.273 (4)C10—C111.383 (5)
N3—C31.343 (4)C10—H100.9300
N3—C11.346 (5)C11—H110.9300
O1—Ce1—O351.14 (8)O1—Ce1—N2i73.31 (8)
O1—Ce1—O4143.29 (9)O6—Ce1—N2i113.43 (9)
O1—Ce1—O6118.74 (8)O6i—Ce1—N2i25.14 (8)
O3—Ce1—O4102.46 (9)O3i—Ce1—N2i85.63 (8)
O3—Ce1—O668.11 (9)O3—Ce1—N2i86.41 (9)
O4—Ce1—O650.15 (8)O4i—Ce1—N2i25.04 (8)
O1—Ce1—N374.10 (9)O4—Ce1—N2i80.84 (9)
O3—Ce1—N368.35 (9)N3i—Ce1—N2i100.88 (9)
O4—Ce1—N3124.25 (9)N3—Ce1—N2i146.85 (8)
O6—Ce1—N377.66 (9)N1i—Ce1—N2i110.69 (8)
O1i—Ce1—O1141.76 (12)N1—O1—Ce197.48 (19)
O1i—Ce1—O676.88 (9)N1—O3—Ce195.63 (19)
O1i—Ce1—O6i118.74 (8)N2—O4—Ce195.69 (18)
O1—Ce1—O6i76.88 (9)N2—O6—Ce198.66 (18)
O6—Ce1—O6i134.41 (13)O2—N1—O3123.2 (3)
O1i—Ce1—O3i51.14 (8)O2—N1—O1121.1 (3)
O1—Ce1—O3i134.17 (9)O3—N1—O1115.7 (3)
O6—Ce1—O3i106.90 (9)O5—N2—O4123.9 (3)
O6i—Ce1—O3i68.11 (9)O5—N2—O6120.7 (3)
O1i—Ce1—O3134.17 (9)O4—N2—O6115.4 (3)
O6i—Ce1—O3106.90 (9)C3—N3—C1115.6 (3)
O3i—Ce1—O3167.84 (12)C3—N3—Ce1119.2 (2)
O1i—Ce1—O4i143.29 (9)C1—N3—Ce1123.2 (2)
O1—Ce1—O4i74.39 (9)N3—C1—C2124.0 (3)
O6—Ce1—O4i90.63 (9)N3—C1—H1118.0
O6i—Ce1—O4i50.15 (8)C2—C1—H1118.0
O3i—Ce1—O4i102.46 (9)C1—C2—C5119.5 (3)
O3—Ce1—O4i67.17 (9)C1—C2—H2120.3
O1i—Ce1—O474.38 (9)C5—C2—H2120.3
O6i—Ce1—O490.63 (9)N3—C3—C4124.5 (3)
O3i—Ce1—O467.17 (9)N3—C3—H3117.7
O4i—Ce1—O471.26 (14)C4—C3—H3117.7
O1i—Ce1—N3i74.10 (9)C3—C4—C5118.9 (3)
O1—Ce1—N3i76.18 (8)C3—C4—H4120.5
O6—Ce1—N3i145.11 (9)C5—C4—H4120.5
O6i—Ce1—N3i77.66 (9)C2—C5—C4117.3 (3)
O3i—Ce1—N3i68.35 (9)C2—C5—C6122.2 (3)
O3—Ce1—N3i122.33 (8)C4—C5—C6120.5 (3)
O4i—Ce1—N3i124.26 (9)C7—C6—C11117.9 (3)
O4—Ce1—N3i135.21 (9)C7—C6—C5120.6 (3)
O1i—Ce1—N376.18 (8)C11—C6—C5121.5 (3)
O6i—Ce1—N3145.11 (9)C8—C7—C6119.0 (3)
O3i—Ce1—N3122.33 (8)C8—C7—H7120.5
O4i—Ce1—N3135.21 (9)C6—C7—H7120.5
N3i—Ce1—N376.97 (12)C9—C8—C7122.3 (3)
O1i—Ce1—N1i25.73 (8)C9—C8—H8118.9
O1—Ce1—N1i144.93 (8)C7—C8—H8118.9
O6—Ce1—N1i92.35 (9)C10—C9—C8119.8 (3)
O6i—Ce1—N1i93.24 (9)C10—C9—H9120.1
O3i—Ce1—N1i25.42 (9)C8—C9—H9120.1
O3—Ce1—N1i158.41 (9)C9—C10—C11122.3 (4)
O4i—Ce1—N1i124.37 (9)C9—C10—H10118.8
O4—Ce1—N1i68.90 (9)C11—C10—H10118.8
N3i—Ce1—N1i68.82 (9)C10—C11—C6118.7 (3)
N3—Ce1—N1i99.46 (9)C10—C11—H11120.6
O1i—Ce1—N2i135.76 (8)C6—C11—H11120.6
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.733.096 (4)105
C3—H3···O60.932.383.027 (4)127

Experimental details

Crystal data
Chemical formula[Ce(NO3)4(C11H9N)2]
Mr698.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)20.136 (5), 7.8079 (14), 18.310 (3)
β (°) 118.834 (2)
V3)2521.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.40 × 0.33 × 0.21
Data collection
DiffractometerBruker APEXII area-detector diffracmeter
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.520, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
7911, 2399, 2357
Rint0.014
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.073, 1.09
No. of reflections2399
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.56

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Ce1—O12.466 (2)Ce1—O62.490 (3)
Ce1—O32.515 (3)Ce1—N32.623 (3)
Ce1—O42.559 (3)
O1—Ce1—O351.14 (8)O4—Ce1—O650.15 (8)
O1—Ce1—O4143.29 (9)O1—Ce1—N374.10 (9)
O1—Ce1—O6118.74 (8)O3—Ce1—N368.35 (9)
O3—Ce1—O4102.46 (9)O4—Ce1—N3124.25 (9)
O3—Ce1—O668.11 (9)O6—Ce1—N377.66 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.733.096 (4)105
C3—H3···O60.932.383.027 (4)127
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds