Download citation
Download citation
link to html
From powder pattern indexing it has been demonstrated that [Y(H2O)]2(C2O4)(CO3)2, yttrium oxalate carbonate, crystallizes with orthorhombic symmetry, space group C2221, a = 7.8177 (7), b = 14.943 (1), c = 9.4845 (7) Å, V = 1108.0 (1) Å3, Z = 4. This unit cell displays a doubling of the c parameter, arising from weak diffraction lines observed in the powder diffraction pattern, with respect to results reported in the literature. The crystal structure has been solved ab initio using direct methods from powder data and has been confirmed by additional single-crystal data collected with a CCD area detector. The overall crystal structure is similar for both unit cells, except that an alternation of the carbonate groups in the direction parallel to the screw axis is displayed in the larger cell, while with the suggested half unit cell (space group C2mm) the carbonate groups would show only one orientation. The unit-cell determination strategy from single-crystal diffraction, collected with Nonius CAD-4 and Nonius Kappa CCD diffractometers, is discussed with respect to the results extracted from the powder diffraction pattern. The study demonstrates the power and usefulness of the full trace of a powder pattern for the detection of subtle structure details.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100010004/an0567sup1.cif
Contains datablocks global, pow, C

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S0108768100010004/an0567sup2.rtv
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100010004/an0567sup3.hkl
Contains datablock ycox

CCDC references: 156693; 156694

Computing details top

Data collection: KappaCCD for C. Cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997) for C. Data reduction: HKL DENZO and SCALEPACK(Otwinowski & Minor, 1997) for C. Program(s) used to solve structure: SIR97 (Cascarano, 1996) for C. Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for C. Molecular graphics: DIAMOND 2.1c for C. Software used to prepare material for publication: SHELXL97 for C.

(pow) top
Crystal data top
Y2(H2O)2(C2O4)(CO3)2V = 1108.0 (1) Å3
Mr = 421.88Z = 4
Orthorhombic, C2221Dx = 2.526 Mg m3
a = 7.8177 (7) ÅCu Kα radiation, λ = 1.5406 Å
b = 14.943 (1) Å × × mm
c = 9.4845 (7) Å
Data collection top
Siemens D500
diffractometer
k = ??
Germanium monochromatorl = ??
h = ??
Refinement top
Crystal data top
Y2(H2O)2(C2O4)(CO3)2c = 9.4845 (7) Å
Mr = 421.88V = 1108.0 (1) Å3
Orthorhombic, C2221Z = 4
a = 7.8177 (7) ÅCu Kα radiation
b = 14.943 (1) Å × × mm
Data collection top
Siemens D500
diffractometer
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Y10.00000.2932 (5)0.2500
Y20.50000.2074 (5)0.2500
C10.400 (1)0.007 (1)0.253 (5)
O110.331 (2)0.0710 (9)0.246 (3)
O120.334 (3)0.0815 (9)0.283 (2)
C20.692 (1)0.225 (1)0.503 (2)
O210.747 (2)0.263 (1)0.387 (1)
O220.5498 (9)0.1851 (6)0.505 (2)
O230.770 (2)0.237 (1)0.623 (1)
OW10.00000.143 (3)0.2500
OW20.50000.371 (3)0.2500
(C) top
Crystal data top
Y2(H2O)2(C2O4)(CO3)2Dx = 2.526 Mg m3
Mr = 421.88Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 2298 reflections
a = 7.8198 (5) Åθ = 1.0–35.0°
b = 14.949 (1) ŵ = 10.47 mm1
c = 9.4908 (5) ÅT = 293 K
V = 1109.4 (1) Å3Prism, colourless
Z = 40.11 × 0.04 × 0.04 mm
F(000) = 808
Data collection top
KappaCCD
diffractometer
2431 independent reflections
Radiation source: fine-focus sealed tube1517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
CCD scansθmax = 35.0°, θmin = 2.9°
Absorption correction: integration
Gaussian integration (Coppens, 1970)
h = 012
Tmin = 0.409, Tmax = 0.634k = 024
2431 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0077P)2 + 7.7969P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max < 0.001
S = 1.09Δρmax = 1.02 e Å3
2431 reflectionsΔρmin = 0.80 e Å3
91 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.00086 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.12 (10)
Crystal data top
Y2(H2O)2(C2O4)(CO3)2V = 1109.4 (1) Å3
Mr = 421.88Z = 4
Orthorhombic, C2221Mo Kα radiation
a = 7.8198 (5) ŵ = 10.47 mm1
b = 14.949 (1) ÅT = 293 K
c = 9.4908 (5) Å0.11 × 0.04 × 0.04 mm
Data collection top
KappaCCD
diffractometer
2431 independent reflections
Absorption correction: integration
Gaussian integration (Coppens, 1970)
1517 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.634Rint = 0.000
2431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104Δρmax = 1.02 e Å3
S = 1.09Δρmin = 0.80 e Å3
2431 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
91 parametersAbsolute structure parameter: 0.12 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.00000.29284 (7)0.25000.0095 (2)
Y20.50000.20723 (7)0.25000.0095 (2)
C10.4007 (5)0.0011 (6)0.2573 (5)0.0155 (8)
O110.3297 (11)0.0726 (3)0.2630 (9)0.0180 (14)
O120.3315 (11)0.0772 (3)0.2639 (8)0.0194 (15)
C20.6951 (5)0.2246 (3)0.4995 (11)0.0130 (8)
O210.7559 (10)0.2466 (4)0.3803 (7)0.0214 (15)
O220.5543 (4)0.1802 (2)0.4968 (8)0.0155 (6)
O230.7559 (10)0.2474 (4)0.6186 (7)0.0214 (15)
OW10.00000.1358 (7)0.25000.061 (5)
OW20.50000.3630 (7)0.25000.082 (7)
H20.601 (6)0.398 (4)0.226 (7)0.025*
H10.065 (8)0.101 (4)0.317 (6)0.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0072 (5)0.0117 (5)0.0098 (5)0.0000.0013 (6)0.000
Y20.0086 (5)0.0097 (5)0.0101 (5)0.0000.0000 (6)0.000
C10.0119 (15)0.0153 (17)0.0195 (17)0.013 (4)0.0017 (17)0.002 (4)
O110.009 (3)0.007 (2)0.038 (4)0.001 (2)0.001 (3)0.001 (3)
O120.014 (4)0.015 (3)0.029 (4)0.002 (3)0.003 (3)0.000 (3)
C20.0126 (17)0.0163 (18)0.0101 (16)0.0005 (15)0.008 (4)0.008 (4)
O210.019 (4)0.033 (4)0.012 (3)0.012 (3)0.002 (3)0.012 (2)
O220.0096 (11)0.0252 (16)0.0116 (13)0.0065 (11)0.003 (3)0.007 (3)
O230.019 (4)0.039 (4)0.006 (2)0.015 (3)0.005 (3)0.010 (2)
OW10.009 (6)0.011 (5)0.161 (16)0.0000.006 (9)0.000
OW20.016 (8)0.015 (6)0.21 (2)0.0000.001 (11)0.000
Geometric parameters (Å, º) top
Y1—OW12.347 (10)Y2—O212.424 (7)
Y1—O21i2.377 (7)Y2—O21ii2.424 (7)
Y1—O21ii2.377 (7)Y2—C22.829 (10)
Y1—O11iii2.415 (7)Y2—C2ii2.829 (10)
Y1—O11iv2.415 (7)C1—O111.235 (9)
Y1—O23v2.433 (7)C1—O121.261 (10)
Y1—O23vi2.433 (7)C1—C1ii1.559 (8)
Y1—O22vi2.474 (7)O11—Y1viii2.415 (7)
Y1—O22v2.474 (7)C2—O211.270 (11)
Y1—C2v2.837 (9)C2—O231.273 (12)
Y1—C2vi2.837 (9)C2—O221.286 (5)
Y2—OW22.328 (11)C2—Y1ix2.837 (9)
Y2—O122.352 (7)O21—Y1x2.377 (7)
Y2—O12ii2.352 (7)O22—Y1ix2.474 (7)
Y2—O23vii2.379 (7)O23—Y2xi2.379 (7)
Y2—O23vi2.379 (7)O23—Y1ix2.433 (7)
Y2—O22ii2.415 (7)OW1—H10.969 (15)
Y2—O222.415 (7)OW2—H20.976 (15)
OW1—Y1—O21i73.11 (15)O23vii—Y2—O22ii71.37 (18)
OW1—Y1—O21ii73.11 (15)O23vi—Y2—O22ii114.51 (19)
O21i—Y1—O21ii146.2 (3)OW2—Y2—O2299.63 (9)
OW1—Y1—O11iii146.38 (18)O12—Y2—O2284.6 (2)
O21i—Y1—O11iii135.3 (2)O12ii—Y2—O2279.5 (2)
O21ii—Y1—O11iii76.9 (2)O23vii—Y2—O22114.51 (19)
OW1—Y1—O11iv146.38 (18)O23vi—Y2—O2271.37 (19)
O21i—Y1—O11iv76.9 (2)O22ii—Y2—O22160.73 (18)
O21ii—Y1—O11iv135.3 (2)OW2—Y2—O2175.94 (14)
O11iii—Y1—O11iv67.2 (3)O12—Y2—O21129.4 (2)
OW1—Y1—O23v75.68 (15)O12ii—Y2—O2176.5 (2)
O21i—Y1—O23v62.24 (19)O23vii—Y2—O2162.3 (2)
O21ii—Y1—O23v108.8 (2)O23vi—Y2—O21109.0 (3)
O11iii—Y1—O23v129.3 (2)O22ii—Y2—O21132.9 (2)
O11iv—Y1—O23v77.2 (2)O22—Y2—O2153.18 (18)
OW1—Y1—O23vi75.68 (15)OW2—Y2—O21ii75.94 (14)
O21i—Y1—O23vi108.8 (2)O12—Y2—O21ii76.5 (2)
O21ii—Y1—O23vi62.24 (19)O12ii—Y2—O21ii129.4 (2)
O11iii—Y1—O23vi77.2 (2)O23vii—Y2—O21ii109.0 (3)
O11iv—Y1—O23vi129.3 (2)O23vi—Y2—O21ii62.3 (2)
O23v—Y1—O23vi151.4 (3)O22ii—Y2—O21ii53.18 (18)
OW1—Y1—O22vi99.38 (8)O22—Y2—O21ii132.9 (2)
O21i—Y1—O22vi71.33 (19)O21—Y2—O21ii151.9 (3)
O21ii—Y1—O22vi114.51 (19)OW2—Y2—C284.74 (8)
O11iii—Y1—O22vi79.6 (2)O12—Y2—C2109.3 (2)
O11iv—Y1—O22vi84.8 (2)O12ii—Y2—C279.7 (2)
O23v—Y1—O22vi132.80 (17)O23vii—Y2—C288.8 (2)
O23vi—Y1—O22vi53.21 (17)O23vi—Y2—C288.2 (2)
OW1—Y1—O22v99.38 (8)O22ii—Y2—C2157.26 (14)
O21i—Y1—O22v114.51 (19)O22—Y2—C226.93 (13)
O21ii—Y1—O22v71.33 (19)O21—Y2—C226.6 (2)
O11iii—Y1—O22v84.8 (2)O21ii—Y2—C2148.18 (18)
O11iv—Y1—O22v79.6 (2)OW2—Y2—C2ii84.74 (8)
O23v—Y1—O22v53.21 (17)O12—Y2—C2ii79.7 (2)
O23vi—Y1—O22v132.80 (17)O12ii—Y2—C2ii109.3 (2)
O22vi—Y1—O22v161.24 (16)O23vii—Y2—C2ii88.2 (2)
OW1—Y1—C2v84.73 (9)O23vi—Y2—C2ii88.8 (2)
O21i—Y1—C2v88.7 (2)O22ii—Y2—C2ii26.93 (13)
O21ii—Y1—C2v88.2 (2)O22—Y2—C2ii157.26 (14)
O11iii—Y1—C2v109.3 (2)O21—Y2—C2ii148.18 (18)
O11iv—Y1—C2v79.8 (2)O21ii—Y2—C2ii26.6 (2)
O23v—Y1—C2v26.6 (2)C2—Y2—C2ii169.47 (17)
O23vi—Y1—C2v148.10 (19)O11—C1—O12127.6 (4)
O22vi—Y1—C2v157.16 (16)O11—C1—C1ii116.8 (5)
O22v—Y1—C2v26.92 (16)O12—C1—C1ii115.6 (4)
OW1—Y1—C2vi84.73 (9)C1—O11—Y1viii119.6 (6)
O21i—Y1—C2vi88.2 (2)C1—O12—Y2120.2 (6)
O21ii—Y1—C2vi88.7 (2)O21—C2—O23125.6 (4)
O11iii—Y1—C2vi79.8 (2)O21—C2—O22115.9 (9)
O11iv—Y1—C2vi109.3 (2)O23—C2—O22118.4 (8)
O23v—Y1—C2vi148.10 (19)O21—C2—Y258.7 (5)
O23vi—Y1—C2vi26.6 (2)O23—C2—Y2165.8 (4)
O22vi—Y1—C2vi26.92 (16)O22—C2—Y258.3 (5)
O22v—Y1—C2vi157.16 (16)O21—C2—Y1ix166.2 (4)
C2v—Y1—C2vi169.46 (18)O23—C2—Y1ix58.7 (5)
OW2—Y2—O12145.74 (19)O22—C2—Y1ix60.6 (5)
OW2—Y2—O12ii145.74 (19)Y2—C2—Y1ix113.77 (14)
O12—Y2—O12ii68.5 (4)C2—O21—Y1x147.0 (6)
OW2—Y2—O23vii73.44 (15)C2—O21—Y294.7 (5)
O12—Y2—O23vii135.6 (2)Y1x—O21—Y2117.9 (3)
O12ii—Y2—O23vii75.9 (2)C2—O22—Y294.8 (6)
OW2—Y2—O23vi73.44 (14)C2—O22—Y1ix92.5 (6)
O12—Y2—O23vi75.9 (2)Y2—O22—Y1ix152.25 (15)
O12ii—Y2—O23vi135.6 (2)C2—O23—Y2xi147.3 (5)
O23vii—Y2—O23vi146.9 (3)C2—O23—Y1ix94.7 (5)
OW2—Y2—O22ii99.63 (9)Y2xi—O23—Y1ix117.5 (3)
O12—Y2—O22ii79.5 (2)Y1—OW1—H1123 (4)
O12ii—Y2—O22ii84.6 (2)Y2—OW2—H2122 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z1/2; (vi) x1/2, y+1/2, z+1; (vii) x+3/2, y+1/2, z1/2; (viii) x+1/2, y1/2, z; (ix) x+1/2, y+1/2, z+1/2; (x) x+1, y, z; (xi) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1···O120.97 (2)2.17 (7)2.739 (10)116 (5)
OW2—H2···O11xii0.98 (2)1.87 (4)2.755 (9)149 (6)
Symmetry code: (xii) x+1/2, y+1/2, z.

Experimental details

(pow)(C)
Crystal data
Chemical formulaY2(H2O)2(C2O4)(CO3)2Y2(H2O)2(C2O4)(CO3)2
Mr421.88421.88
Crystal system, space groupOrthorhombic, C2221Orthorhombic, C2221
Temperature (K)?293
a, b, c (Å)7.8177 (7), 14.943 (1), 9.4845 (7)7.8198 (5), 14.949 (1), 9.4908 (5)
V3)1108.0 (1)1109.4 (1)
Z44
Radiation typeCu KαMo Kα
µ (mm1)?10.47
Crystal size (mm) × × 0.11 × 0.04 × 0.04
Data collection
DiffractometerSiemens D500
diffractometer
KappaCCD
diffractometer
Absorption correction?Integration
Gaussian integration (Coppens, 1970)
Tmin, Tmax?, ?0.409, 0.634
No. of measured, independent and
observed reflections
?, ?, ? (?)2431, 2431, 1517 [I > 2σ(I)]
Rint?0.000
Distance from source to specimen (mm)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? 0.046, 0.104, 1.09
No. of reflections?2431
No. of parameters?91
No. of restraints?2
H-atom treatment?H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)?, ?1.02, 0.80
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter?0.12 (10)

Computer programs: KappaCCD, HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK(Otwinowski & Minor, 1997), SIR97 (Cascarano, 1996), SHELXL97 (Sheldrick, 1997), DIAMOND 2.1c, SHELXL97.

Selected geometric parameters (Å, º) for (C) top
Y1—OW12.347 (10)Y2—O23vi2.379 (7)
Y1—O21i2.377 (7)Y2—O22ii2.415 (7)
Y1—O21ii2.377 (7)Y2—O222.415 (7)
Y1—O11iii2.415 (7)Y2—O212.424 (7)
Y1—O11iv2.415 (7)Y2—O21ii2.424 (7)
Y1—O23v2.433 (7)C1—O111.235 (9)
Y1—O23vi2.433 (7)C1—O121.261 (10)
Y1—O22vi2.474 (7)C1—C1ii1.559 (8)
Y1—O22v2.474 (7)C2—O211.270 (11)
Y2—OW22.328 (11)C2—O231.273 (12)
Y2—O122.352 (7)C2—O221.286 (5)
Y2—O12ii2.352 (7)OW1—H10.969 (15)
Y2—O23vii2.379 (7)OW2—H20.976 (15)
O11—C1—O12127.6 (4)O21—C2—O23125.6 (4)
O11—C1—C1ii116.8 (5)O21—C2—O22115.9 (9)
O12—C1—C1ii115.6 (4)O23—C2—O22118.4 (8)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z1/2; (vi) x1/2, y+1/2, z+1; (vii) x+3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (C) top
D—H···AD—HH···AD···AD—H···A
OW1—H1···O120.969 (15)2.17 (7)2.739 (10)116 (5)
OW2—H2···O11viii0.976 (15)1.87 (4)2.755 (9)149 (6)
Symmetry code: (viii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds