Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The goal of the present study was to elucidate the formation mechanisms of highly dispersed catalysts by the molten salt method. For this purpose, multi-component fitting Mo K-edge EXAFS analysis was applied to the structure of molybdate catalysts prepared in KNO3 and NaNO3. The analysis revealed that MoO3 dissolved in molten salts was at first transformed into polymolybdate anions and finally into MoO42- anions. The transformation into MoO42- anions took place at a lower temperature when NaNO3 was used as molten salt than KNO3. In contrast, polymolybdate anions were stable even at higher temperature when ZrO2 was added as a support of molybdate.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds