Download citation
Download citation
link to html
A transparent Yb3+:NaY(WO4)2 single crystal with dimensions of 30 mm (diameter) × 40 mm has been grown by the Czochralski method. The high crystalline quality of the as-grown Yb3+:NaY(WO4)2 crystals was confirmed by high-resolution X-ray diffraction. The effective segregation coefficients of elemental Yb, Na, Y and W in Yb3+:NaY(WO4)2 were measured using the X-ray fluorescence method. Powder and single-crystal X-ray diffraction data of NaYb0.05Y0.95(WO4)2 are reported. The structure refinement shows that NaYb0.05Y0.95(WO4)2 crystallizes in the tetragonal space group I41/a, with a = b = 5.2039 (2), c = 11.2838 (9) Å, α = β = γ = 90°, V = 305.57 (3) Å3 and Z = 2. A series of possible growth faces (hkl) were determined from the crystal lattice and symmetry according to the Bravais–Friedel Donnay–Harker theory, and the relationship among crystal structure, growth habits and crystal morphology is discussed. In addition, the thermal properties of the crystal, including the specific heat, thermal expansion, thermal diffusion and thermal conductivity, were carefully investigated. The anisotropy of the crystal thermal conductivities is explained from the point of view of the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889808008649/aj5103sup1.cif
Contains datablocks fanjd02, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889808008649/aj5103fanjd02sup2.hkl
Contains datablock fanjd02

Computing details top

Data collection: APEX2 Software Suite (Bruker,2005); cell refinement: APEX2 Software Suite (Bruker,2005); data reduction: APEX2 Software Suite (Bruker,2005); program(s) used to solve structure: SIR97 (Altomare,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
(fanjd02) top
Crystal data top
NaO8W2Y0.95Yb0.05Dx = 6.649 Mg m3
Mr = 611.81Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 995 reflections
Hall symbol: -I 4adθ = 4.3–33.1°
a = 5.2039 (2) ŵ = 47.33 mm1
c = 11.2838 (9) ÅT = 293 K
V = 305.57 (3) Å3Plate, colourless
Z = 20.23 × 0.15 × 0.03 mm
F(000) = 527
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
292 independent reflections
Radiation source: fine-focus sealed tube257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 33.4°, θmin = 4.3°
Absorption correction: numerical
APEX2 Software Suite (Bruker,2005)
h = 65
Tmin = 0.032, Tmax = 0.313k = 78
1208 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0221P)2 + 2.0193P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.23Δρmax = 2.09 e Å3
292 reflectionsΔρmin = 3.04 e Å3
15 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.038 (2)
Crystal data top
NaO8W2Y0.95Yb0.05Z = 2
Mr = 611.81Mo Kα radiation
Tetragonal, I41/aµ = 47.33 mm1
a = 5.2039 (2) ÅT = 293 K
c = 11.2838 (9) Å0.23 × 0.15 × 0.03 mm
V = 305.57 (3) Å3
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
292 independent reflections
Absorption correction: numerical
APEX2 Software Suite (Bruker,2005)
257 reflections with I > 2σ(I)
Tmin = 0.032, Tmax = 0.313Rint = 0.044
1208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02815 parameters
wR(F2) = 0.0650 restraints
S = 1.23Δρmax = 2.09 e Å3
292 reflectionsΔρmin = 3.04 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.50001.25000.87500.0111 (2)
Y10.00000.75000.87500.0090 (4)0.475
Na10.00000.75000.87500.0090 (4)0.50
Yb10.00000.75000.87500.0090 (4)0.025
O10.3443 (7)1.0072 (7)0.7891 (4)0.0195 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0110 (2)0.0110 (2)0.0111 (3)0.0000.0000.000
Y10.0108 (5)0.0108 (5)0.0054 (8)0.0000.0000.000
Na10.0108 (5)0.0108 (5)0.0054 (8)0.0000.0000.000
Yb10.0108 (5)0.0108 (5)0.0054 (8)0.0000.0000.000
O10.0173 (17)0.0246 (19)0.0165 (16)0.0035 (16)0.0012 (15)0.0045 (16)
Geometric parameters (Å, º) top
W1—O11.787 (4)Y1—O1x2.424 (4)
W1—O1i1.787 (4)Y1—O1xi2.437 (4)
W1—O1ii1.787 (4)Y1—O12.437 (4)
W1—O1iii1.787 (4)Y1—O1xii2.437 (4)
W1—Yb1iv3.6797 (1)Y1—O1xiii2.437 (4)
W1—Na1iv3.6797 (1)Y1—Na1xiv3.8377 (2)
W1—Na1v3.6797 (1)Y1—Na1xv3.8377 (2)
W1—Yb1v3.6797 (1)Y1—Y1xiv3.8377 (2)
W1—Yb1vi3.6797 (1)Y1—Yb1xv3.8377 (2)
W1—Na1vi3.6797 (1)O1—Yb1viii2.424 (4)
Y1—O1vii2.424 (4)O1—Na1viii2.424 (4)
Y1—O1viii2.424 (4)O1—Y1viii2.424 (4)
Y1—O1ix2.424 (4)
O1—W1—O1i107.10 (13)O1viii—Y1—O1xii73.40 (8)
O1—W1—O1ii107.10 (13)O1ix—Y1—O1xii153.25 (18)
O1i—W1—O1ii114.3 (3)O1x—Y1—O1xii75.74 (14)
O1—W1—O1iii114.3 (3)O1xi—Y1—O1xii99.09 (7)
O1i—W1—O1iii107.10 (13)O1—Y1—O1xii99.09 (7)
O1ii—W1—O1iii107.10 (13)O1vii—Y1—O1xiii75.74 (14)
O1—W1—Yb1iv145.17 (13)O1viii—Y1—O1xiii153.25 (18)
O1i—W1—Yb1iv79.66 (12)O1ix—Y1—O1xiii73.40 (8)
O1ii—W1—Yb1iv100.34 (12)O1x—Y1—O1xiii68.83 (9)
O1iii—W1—Yb1iv34.83 (13)O1xi—Y1—O1xiii99.09 (7)
O1—W1—Na1iv145.17 (13)O1—Y1—O1xiii99.09 (7)
O1i—W1—Na1iv79.66 (12)O1xii—Y1—O1xiii133.2 (2)
O1ii—W1—Na1iv100.34 (12)O1vii—Y1—Na1xiv159.36 (8)
O1iii—W1—Na1iv34.83 (13)O1viii—Y1—Na1xiv70.43 (9)
Yb1iv—W1—Na1iv0.0O1ix—Y1—Na1xiv37.99 (9)
O1—W1—Na1v79.66 (12)O1x—Y1—Na1xiv100.80 (10)
O1i—W1—Na1v34.83 (13)O1xi—Y1—Na1xiv37.75 (9)
O1ii—W1—Na1v145.17 (13)O1—Y1—Na1xiv101.90 (10)
O1iii—W1—Na1v100.34 (12)O1xii—Y1—Na1xiv131.64 (10)
Yb1iv—W1—Na1v90.0O1xiii—Y1—Na1xiv85.41 (9)
Na1iv—W1—Na1v90.0O1vii—Y1—Na1xv37.99 (9)
O1—W1—Yb1v79.66 (12)O1viii—Y1—Na1xv159.36 (8)
O1i—W1—Yb1v34.83 (13)O1ix—Y1—Na1xv100.80 (10)
O1ii—W1—Yb1v145.17 (13)O1x—Y1—Na1xv70.43 (9)
O1iii—W1—Yb1v100.34 (12)O1xi—Y1—Na1xv131.64 (10)
Yb1iv—W1—Yb1v90.0O1—Y1—Na1xv85.41 (9)
Na1iv—W1—Yb1v90.0O1xii—Y1—Na1xv101.90 (10)
Na1v—W1—Yb1v0.0O1xiii—Y1—Na1xv37.75 (9)
O1—W1—Yb1vi100.34 (12)Na1xiv—Y1—Na1xv122.705 (3)
O1i—W1—Yb1vi145.17 (13)O1vii—Y1—Y1xiv159.36 (8)
O1ii—W1—Yb1vi34.83 (13)O1viii—Y1—Y1xiv70.43 (9)
O1iii—W1—Yb1vi79.66 (12)O1ix—Y1—Y1xiv37.99 (9)
Yb1iv—W1—Yb1vi90.0O1x—Y1—Y1xiv100.80 (10)
Na1iv—W1—Yb1vi90.0O1xi—Y1—Y1xiv37.75 (9)
Na1v—W1—Yb1vi180.0O1—Y1—Y1xiv101.90 (10)
Yb1v—W1—Yb1vi180.0O1xii—Y1—Y1xiv131.64 (10)
O1—W1—Na1vi100.34 (12)O1xiii—Y1—Y1xiv85.41 (9)
O1i—W1—Na1vi145.17 (13)Na1xiv—Y1—Y1xiv0.0
O1ii—W1—Na1vi34.83 (13)Na1xv—Y1—Y1xiv122.705 (3)
O1iii—W1—Na1vi79.66 (12)O1vii—Y1—Yb1xv37.99 (9)
Yb1iv—W1—Na1vi90.0O1viii—Y1—Yb1xv159.36 (8)
Na1iv—W1—Na1vi90.0O1ix—Y1—Yb1xv100.80 (10)
Na1v—W1—Na1vi180.0O1x—Y1—Yb1xv70.43 (9)
Yb1v—W1—Na1vi180.0O1xi—Y1—Yb1xv131.64 (10)
Yb1vi—W1—Na1vi0.0O1—Y1—Yb1xv85.41 (9)
O1vii—Y1—O1viii125.70 (12)O1xii—Y1—Yb1xv101.90 (10)
O1vii—Y1—O1ix125.70 (12)O1xiii—Y1—Yb1xv37.75 (9)
O1viii—Y1—O1ix80.4 (2)Na1xiv—Y1—Yb1xv122.705 (3)
O1vii—Y1—O1x80.4 (2)Na1xv—Y1—Yb1xv0.0
O1viii—Y1—O1x125.70 (12)Y1xiv—Y1—Yb1xv122.705 (3)
O1ix—Y1—O1x125.70 (12)W1—O1—Yb1viii130.77 (18)
O1vii—Y1—O1xi153.25 (18)W1—O1—Na1viii130.77 (18)
O1viii—Y1—O1xi68.83 (9)Yb1viii—O1—Na1viii0.0
O1ix—Y1—O1xi75.74 (14)W1—O1—Y1viii130.77 (18)
O1x—Y1—O1xi73.40 (8)Yb1viii—O1—Y1viii0.0
O1vii—Y1—O173.40 (8)Na1viii—O1—Y1viii0.0
O1viii—Y1—O175.74 (14)W1—O1—Y1120.4 (2)
O1ix—Y1—O168.83 (9)Yb1viii—O1—Y1104.26 (14)
O1x—Y1—O1153.25 (18)Na1viii—O1—Y1104.26 (14)
O1xi—Y1—O1133.2 (2)Y1viii—O1—Y1104.26 (14)
O1vii—Y1—O1xii68.83 (9)
O1i—W1—O1—Yb1viii68.56 (13)O1xi—Y1—O1—W1160.0 (2)
O1ii—W1—O1—Yb1viii168.4 (3)O1xii—Y1—O1—W188.3 (3)
O1iii—W1—O1—Yb1viii49.9 (2)O1xiii—Y1—O1—W148.3 (2)
Yb1iv—W1—O1—Yb1viii27.9 (4)Na1xiv—Y1—O1—W1135.48 (19)
Na1iv—W1—O1—Yb1viii27.9 (4)Na1xv—Y1—O1—W113.00 (19)
Na1v—W1—O1—Yb1viii46.9 (2)Y1xiv—Y1—O1—W1135.48 (19)
Yb1v—W1—O1—Yb1viii46.9 (2)Yb1xv—Y1—O1—W113.00 (19)
Yb1vi—W1—O1—Yb1viii133.1 (2)O1vii—Y1—O1—Yb1viii134.75 (16)
Na1vi—W1—O1—Yb1viii133.1 (2)O1viii—Y1—O1—Yb1viii0.0
O1i—W1—O1—Na1viii68.56 (13)O1ix—Y1—O1—Yb1viii85.0 (2)
O1ii—W1—O1—Na1viii168.4 (3)O1x—Y1—O1—Yb1viii146.5 (2)
O1iii—W1—O1—Na1viii49.9 (2)O1xi—Y1—O1—Yb1viii41.50 (10)
Yb1iv—W1—O1—Na1viii27.9 (4)O1xii—Y1—O1—Yb1viii70.18 (5)
Na1iv—W1—O1—Na1viii27.9 (4)O1xiii—Y1—O1—Yb1viii153.18 (17)
Na1v—W1—O1—Na1viii46.9 (2)Na1xiv—Y1—O1—Yb1viii66.00 (13)
Yb1v—W1—O1—Na1viii46.9 (2)Na1xv—Y1—O1—Yb1viii171.52 (13)
Yb1vi—W1—O1—Na1viii133.1 (2)Y1xiv—Y1—O1—Yb1viii66.00 (13)
Na1vi—W1—O1—Na1viii133.1 (2)Yb1xv—Y1—O1—Yb1viii171.52 (13)
O1i—W1—O1—Y1viii68.56 (13)O1vii—Y1—O1—Na1viii134.75 (16)
O1ii—W1—O1—Y1viii168.4 (3)O1viii—Y1—O1—Na1viii0.0
O1iii—W1—O1—Y1viii49.9 (2)O1ix—Y1—O1—Na1viii85.0 (2)
Yb1iv—W1—O1—Y1viii27.9 (4)O1x—Y1—O1—Na1viii146.5 (2)
Na1iv—W1—O1—Y1viii27.9 (4)O1xi—Y1—O1—Na1viii41.50 (10)
Na1v—W1—O1—Y1viii46.9 (2)O1xii—Y1—O1—Na1viii70.18 (5)
Yb1v—W1—O1—Y1viii46.9 (2)O1xiii—Y1—O1—Na1viii153.18 (17)
Yb1vi—W1—O1—Y1viii133.1 (2)Na1xiv—Y1—O1—Na1viii66.00 (13)
Na1vi—W1—O1—Y1viii133.1 (2)Na1xv—Y1—O1—Na1viii171.52 (13)
O1i—W1—O1—Y183.5 (3)Y1xiv—Y1—O1—Na1viii66.00 (13)
O1ii—W1—O1—Y139.6 (2)Yb1xv—Y1—O1—Na1viii171.52 (13)
O1iii—W1—O1—Y1158.0 (3)O1vii—Y1—O1—Y1viii134.75 (16)
Yb1iv—W1—O1—Y1180.0O1viii—Y1—O1—Y1viii0.0
Na1iv—W1—O1—Y1180.0O1ix—Y1—O1—Y1viii85.0 (2)
Na1v—W1—O1—Y1105.20 (19)O1x—Y1—O1—Y1viii146.5 (2)
Yb1v—W1—O1—Y1105.20 (19)O1xi—Y1—O1—Y1viii41.50 (10)
Yb1vi—W1—O1—Y174.80 (19)O1xii—Y1—O1—Y1viii70.18 (5)
Na1vi—W1—O1—Y174.80 (19)O1xiii—Y1—O1—Y1viii153.18 (17)
O1vii—Y1—O1—W123.8 (2)Na1xiv—Y1—O1—Y1viii66.00 (13)
O1viii—Y1—O1—W1158.5 (3)Na1xv—Y1—O1—Y1viii171.52 (13)
O1ix—Y1—O1—W1116.45 (14)Y1xiv—Y1—O1—Y1viii66.00 (13)
O1x—Y1—O1—W112.0 (4)Yb1xv—Y1—O1—Y1viii171.52 (13)
Symmetry codes: (i) y+7/4, x+3/4, z+7/4; (ii) y3/4, x+7/4, z+7/4; (iii) x+1, y+5/2, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x, y+1, z; (vii) y3/4, x+5/4, z+1/4; (viii) x+1/2, y+3/2, z+3/2; (ix) x1/2, y, z+3/2; (x) y+3/4, x+1/4, z+1/4; (xi) x, y+3/2, z; (xii) y3/4, x+3/4, z+7/4; (xiii) y+3/4, x+3/4, z+7/4; (xiv) x1/2, y+3/2, z+3/2; (xv) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaNaO8W2Y0.95Yb0.05
Mr611.81
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)5.2039 (2), 11.2838 (9)
V3)305.57 (3)
Z2
Radiation typeMo Kα
µ (mm1)47.33
Crystal size (mm)0.23 × 0.15 × 0.03
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionNumerical
APEX2 Software Suite (Bruker,2005)
Tmin, Tmax0.032, 0.313
No. of measured, independent and
observed [I > 2σ(I)] reflections
1208, 292, 257
Rint0.044
(sin θ/λ)max1)0.774
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.23
No. of reflections292
No. of parameters15
Δρmax, Δρmin (e Å3)2.09, 3.04

Computer programs: APEX2 Software Suite (Bruker,2005), SIR97 (Altomare,1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), WinGX (Farrugia,1999).

 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds