Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A novel method for focusing X-rays in two dimensions by thermal-gradient crystals in symmetrical Laue geometry is described. A 225 kV stationary tungsten tube delivers an X-ray beam with a source diameter of about 1.0 mm (full width at half-maximum). The focal point at the detector at a distance up to 16 m from the source is of the same size. The beam at the focusing crystals at half the distance between the source and the detector has typical dimensions of 30 × 30 mm. The intensity of the focal point can be increased by more than 200 times by applying a thermal gradient of about 2.2 K mm-1 on the focusing crystals. The described method and apparatus are designed for small-angle X-ray scattering at high photon energies up to 60 keV, where the high penetration power allows experiments on strongly absorbing materials in transmission mode. Particle sizes up to 3000 Å can be detected. First measurements on nanocrystalline tungsten carbide and Teflon yield radii of gyration of 540 Å and 815 Å, respectively.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds