Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Use of the Schulz or Gamma distribution in the description of particle sizes facilitates calculation of analytic polydisperse form factors using Laplace transforms, {\cal L}[f(u)]. Here, the Laplace transform approach is combined with the separated form factor (SFF) approximation [Kiselev et al. (2002). Appl. Phys. A, 74, S1654-S1656] to obtain expressions for form factors, P(q), for polydisperse spherical vesicles with various forms of membrane scattering length density (SLD) profile. The SFF approximation is tested against exact form factors that have been numerically integrated over the size distribution, and is shown to represent the vesicle form factor accurately for typical vesicle sizes and membrane thicknesses. Finally, various model SLD profiles are used with the SFF approximation to fit experimental small-angle neutron scattering (SANS) curves from extruded unilamellar vesicles.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds