Download citation
Download citation
link to html
Thermodynamic stability is an essential property of crystalline materials, and its accurate calculation requires a reliable description of the thermal motion – phonons – in the crystal. Such information can be obtained from periodic density functional theory (DFT) calculations, but these are costly and in some cases insufficiently accurate for molecular crystals. This deficiency is addressed here by refining a lattice-dynamics model, derived from DFT calculations, against accurate high-resolution X-ray diffraction data. For the first time, a normal-mode refinement is combined with the refinement of aspherical atomic form factors, allowing a comprehensive description and physically meaningful deconvolution of thermal motion and static charge density in the crystal. The small and well diffracting L-alanine system was used. Different lattice-dynamics models, with or without phonon dispersion, and derived from different levels of theory, were tested, and models using spherical and aspherical form factors were compared. The refinements indicate that the vibrational information content in the 23 K data is too small to study lattice dynamics, whereas the 123 K data appear to hold information on the acoustic and lowest-frequency optical phonons. These normal-mode models show slightly larger refinement residuals than their counterparts using atomic displacement parameters, and these features are not removed by considering phonon dispersion in the model. The models refined against the 123 K data, regardless of their sophistication, give calculated heat capacities for L-alanine within less than 1 cal mol−1 K−1 of the calorimetric measurements, in the temperature range 10–300 K. The findings show that the normal-mode refinement method can be combined with an elaborate description of the electron density. It appears to be a promising technique for free-energy determination for crystalline materials at the expense of performing a single-crystal elastic X-ray diffraction determination combined with periodic DFT calculations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205327331901355X/ae5068sup1.cif
Contains datablocks global, shelx, shelx_NoMoRe_dispersion, shelx_NoMoRe_gamma, xd, xd_dispersion, xd_gamma

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205327331901355X/ae5068shelxsup2.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205327331901355X/ae5068shelx_NoMoRe_dispersionsup3.hkl
Contains datablock shelx_NoMoRe_dispersion

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205327331901355X/ae5068shelx_NoMoRe_gammasup4.hkl
Contains datablocks shelx_NoMoRe_gamma, test

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205327331901355X/ae5068xdsup5.hkl
Contains datablock xd

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205327331901355X/ae5068xd_dispersionsup6.hkl
Contains datablock xd_dispersion

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205327331901355X/ae5068xd_gammasup7.hkl
Contains datablock xd_gamma

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205327331901355X/ae5068sup8.pdf
Additional figures and tables

CCDC references: 1899343; 1899344; 1899345; 1899346; 1899347; 1899348

Computing details top

Program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014) for shelx, shelx_NoMoRe_dispersion, shelx_NoMoRe_gamma; Volkov et al., (2006) for xd, xd_dispersion, xd_gamma. Molecular graphics: ORTEP for Windows (Farrugia, 2012) for shelx, shelx_NoMoRe_dispersion, shelx_NoMoRe_gamma; Volkov et al., (2006) for xd, xd_dispersion, xd_gamma. Software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) for shelx, shelx_NoMoRe_dispersion, shelx_NoMoRe_gamma; Volkov et al., (2006) for xd, xd_dispersion, xd_gamma.

(shelx) top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.1Dx = 1.399 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5997 reflections
a = 5.9534 (5) Åθ = 3.3–58.0°
b = 12.2772 (10) ŵ = 0.12 mm1
c = 5.7882 (5) ÅT = 123 K
V = 423.07 (6) Å3Rhombic, colorless
Z = 40.33 × 0.26 × 0.18 mm
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
5997 independent reflections
Radiation source: fine-focus sealed tube5719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 58.0°, θmin = 3.3°
Absorption correction: multi-scan
SADABS, Bruker(2001)
h = 014
Tmin = 0.645, Tmax = 0.751k = 029
5997 measured reflectionsl = 013
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.0037P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.050
S = 1.14Δρmax = 0.38 e Å3
5997 reflectionsΔρmin = 0.27 e Å3
84 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.20 (2)
0 constraintsAbsolute structure: Flack x determined using 2425 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (8)
Secondary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72762 (4)0.08389 (2)0.62535 (4)0.01353 (4)
O20.44356 (4)0.18436 (2)0.76128 (4)0.01348 (3)
N10.64927 (4)0.13772 (2)0.18384 (4)0.01018 (3)
C10.55587 (4)0.14091 (2)0.60041 (4)0.00878 (3)
C20.46905 (4)0.16119 (2)0.35471 (4)0.00891 (3)
C30.26391 (5)0.09093 (3)0.30329 (6)0.01419 (4)
H110.6983 (18)0.0665 (10)0.191 (2)0.022 (2)*
H120.7633 (17)0.1801 (8)0.2048 (18)0.018 (2)*
H130.5906 (18)0.1470 (10)0.036 (2)0.031 (3)*
H210.4318 (18)0.2363 (8)0.3409 (19)0.019 (2)*
H310.2032 (17)0.1075 (8)0.148 (2)0.023 (2)*
H320.1475 (16)0.1035 (8)0.416 (2)0.024 (2)*
H330.3016 (17)0.0136 (9)0.3037 (18)0.020 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.01495 (7)0.01396 (7)0.01167 (7)0.00518 (5)0.00208 (6)0.00126 (5)
O20.01730 (8)0.01584 (7)0.00731 (6)0.00438 (6)0.00087 (5)0.00116 (5)
N10.01185 (6)0.01127 (6)0.00742 (6)0.00057 (5)0.00046 (5)0.00000 (5)
C10.01136 (6)0.00815 (6)0.00684 (6)0.00047 (5)0.00085 (5)0.00004 (5)
C20.01080 (6)0.00894 (6)0.00699 (6)0.00117 (5)0.00059 (5)0.00008 (5)
C30.01277 (8)0.01829 (10)0.01150 (8)0.00304 (7)0.00139 (7)0.00064 (7)
Geometric parameters (Å, º) top
O1—C11.2475 (3)C1—C21.5335 (3)
O2—C11.2644 (3)C2—C31.5246 (4)
N1—C21.4874 (3)C2—H210.952 (10)
N1—H110.923 (11)C3—H310.989 (11)
N1—H120.864 (11)C3—H320.965 (11)
N1—H130.929 (13)C3—H330.976 (11)
C2—N1—H11112.4 (7)C3—C2—C1111.05 (2)
C2—N1—H12110.9 (7)N1—C2—H21107.4 (6)
H11—N1—H12108.4 (10)C3—C2—H21110.2 (7)
C2—N1—H13108.4 (7)C1—C2—H21108.3 (7)
H11—N1—H13106.1 (10)C2—C3—H31110.7 (6)
H12—N1—H13110.5 (10)C2—C3—H32110.7 (6)
O1—C1—O2125.80 (2)H31—C3—H32108.6 (9)
O1—C1—C2118.34 (2)C2—C3—H33111.5 (6)
O2—C1—C2115.86 (2)H31—C3—H33106.6 (9)
N1—C2—C3109.78 (2)H32—C3—H33108.6 (9)
N1—C2—C1110.00 (2)
O1—C1—C2—N118.27 (3)O1—C1—C2—C3103.46 (3)
O2—C1—C2—N1161.89 (2)O2—C1—C2—C376.38 (3)
(shelx_NoMoRe_dispersion) top
Crystal data top
C3H7NO2Dx = 1.399 Mg m3
Mr = 89.1Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5997 reflections
a = 5.9534 (5) Åθ = 3.3–58.0°
b = 12.2772 (10) ŵ = 0.12 mm1
c = 5.7882 (5) ÅT = 123 K
V = 423.07 (6) Å3Rhombic, colorless
Z = 40.33 × 0.26 × 0.18 mm
F(000) = 192
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
5997 independent reflections
Radiation source: fine-focus sealed tube5719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 58.0°, θmin = 3.3°
Absorption correction: multi-scan
SADABS, Bruker(2001)
h = 014
Tmin = 0.645, Tmax = 0.751k = 029
5997 measured reflectionsl = 013
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 2.29Δρmax = 0.54 e Å3
5997 reflectionsΔρmin = 0.69 e Å3
41 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.27 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 2417 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.10 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72759 (5)0.08386 (2)0.62538 (5)0.014
O20.44356 (6)0.18437 (2)0.76126 (5)0.014
N10.64928 (5)0.13768 (2)0.18380 (5)0.010
C10.55584 (5)0.14092 (2)0.60034 (5)0.009
C20.46904 (5)0.16119 (2)0.35465 (5)0.009
C30.26383 (6)0.09090 (3)0.30328 (7)0.014
H110.698 (2)0.0665 (11)0.191 (2)0.024
H120.765 (2)0.1812 (10)0.205 (2)0.023
H130.5912 (18)0.1485 (10)0.030 (2)0.022
H210.431 (2)0.2360 (9)0.345 (2)0.022
H310.203 (2)0.1090 (11)0.149 (2)0.032
H320.1475 (18)0.1060 (11)0.417 (3)0.031
H330.302 (2)0.0134 (11)0.306 (3)0.030
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160.0150.0120.0060.0010.002
O20.0180.0160.0070.0050.0010.001
N10.0120.0110.0080.0010.0010.000
C10.0120.0080.0070.0010.0010.000
C20.0110.0100.0070.0010.0010.000
C30.0120.0180.0110.0020.0020.000
H110.0260.0190.0260.0060.0030.001
H120.0200.0250.0220.0050.0010.001
H130.0260.0260.0130.0010.0010.000
H210.0280.0160.0220.0050.0000.001
H310.0320.0440.0210.0050.0110.005
H320.0220.0440.0270.0020.0060.001
H330.0340.0200.0370.0040.0040.001
Geometric parameters (Å, º) top
O1—C11.2479 (4)C1—C21.5334 (4)
O2—C11.2645 (4)C2—C31.5250 (5)
N1—C21.4875 (4)C2—H210.947 (11)
N1—H110.922 (13)C3—H310.991 (12)
N1—H120.881 (12)C3—H320.975 (13)
N1—H130.962 (11)C3—H330.978 (14)
C2—N1—H11112.5 (9)C3—C2—C1111.04 (3)
C2—N1—H12110.9 (8)N1—C2—H21108.6 (7)
H11—N1—H12108.7 (11)C3—C2—H21110.4 (8)
C2—N1—H13109.1 (7)C1—C2—H21107.1 (8)
H11—N1—H13106.5 (11)C2—C3—H31109.9 (8)
H12—N1—H13108.9 (10)C2—C3—H32109.2 (8)
O1—C1—O2125.76 (3)H31—C3—H32108.1 (12)
O1—C1—C2118.36 (3)C2—C3—H33111.2 (8)
O2—C1—C2115.88 (3)H31—C3—H33108.4 (12)
N1—C2—C3109.79 (3)H32—C3—H33109.9 (12)
N1—C2—C1110.00 (3)
O1—C1—C2—N118.29 (4)O1—C1—C2—C3103.44 (4)
O2—C1—C2—N1161.90 (3)O2—C1—C2—C376.38 (4)
(shelx_NoMoRe_gamma) top
Crystal data top
C3H7NO2Dx = 1.399 Mg m3
Mr = 89.1Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5997 reflections
a = 5.9534 (5) Åθ = 3.3–58.0°
b = 12.2772 (10) ŵ = 0.12 mm1
c = 5.7882 (5) ÅT = 123 K
V = 423.07 (6) Å3Rhombic, colorless
Z = 40.33 × 0.26 × 0.18 mm
F(000) = 192
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
5997 independent reflections
Radiation source: fine-focus sealed tube5719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 58.0°, θmin = 3.3°
Absorption correction: multi-scan
SADABS, Bruker(2001)
h = 014
Tmin = 0.645, Tmax = 0.751k = 029
5997 measured reflectionsl = 013
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.0037P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.44Δρmax = 0.60 e Å3
5997 reflectionsΔρmin = 0.39 e Å3
41 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.17 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 2422 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.11 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72766 (5)0.08390 (2)0.62537 (5)0.013
O20.44354 (5)0.18436 (2)0.76130 (5)0.013
N10.64928 (5)0.13770 (2)0.18385 (5)0.010
C10.55582 (5)0.14090 (2)0.60037 (5)0.009
C20.46902 (5)0.16118 (2)0.35471 (5)0.009
C30.26388 (7)0.09094 (4)0.30331 (7)0.014
H110.699 (2)0.0659 (12)0.191 (3)0.022
H120.762 (2)0.1794 (12)0.207 (2)0.022
H130.594 (2)0.1490 (11)0.033 (2)0.021
H210.429 (2)0.2369 (10)0.343 (3)0.022
H310.202 (2)0.1084 (13)0.150 (3)0.035
H320.147 (2)0.1049 (12)0.415 (3)0.032
H330.301 (3)0.0126 (13)0.303 (3)0.032
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0150.0150.0110.0050.0020.001
O20.0160.0160.0070.0050.0000.001
N10.0120.0100.0070.0000.0000.000
C10.0110.0090.0070.0010.0010.000
C20.0110.0090.0070.0010.0010.000
C30.0130.0180.0110.0030.0020.001
H110.0240.0180.0260.0050.0030.002
H120.0220.0240.0200.0060.0010.001
H130.0260.0250.0130.0000.0010.000
H210.0280.0160.0220.0050.0010.001
H310.0350.0470.0220.0060.0130.003
H320.0220.0440.0300.0040.0070.005
H330.0360.0210.0390.0040.0030.004
Geometric parameters (Å, º) top
O1—C11.2479 (4)C1—C21.5333 (4)
O2—C11.2646 (4)C2—C31.5244 (5)
N1—C21.4876 (4)C2—H210.961 (13)
N1—H110.932 (14)C3—H310.984 (14)
N1—H120.853 (14)C3—H320.964 (15)
N1—H130.943 (13)C3—H330.987 (16)
C2—N1—H11112.6 (9)C3—C2—C1111.05 (3)
C2—N1—H12110.3 (9)N1—C2—H21108.7 (8)
H11—N1—H12108.1 (13)C3—C2—H21109.6 (9)
C2—N1—H13109.6 (8)C1—C2—H21107.7 (9)
H11—N1—H13106.9 (12)C2—C3—H31110.6 (9)
H12—N1—H13109.3 (12)C2—C3—H32110.2 (8)
O1—C1—O2125.77 (3)H31—C3—H32107.3 (14)
O1—C1—C2118.35 (3)C2—C3—H33111.9 (9)
O2—C1—C2115.88 (3)H31—C3—H33107.0 (13)
N1—C2—C3109.79 (3)H32—C3—H33109.7 (13)
N1—C2—C1109.99 (2)
O1—C1—C2—N118.25 (4)O1—C1—C2—C3103.49 (4)
O2—C1—C2—N1161.88 (3)O2—C1—C2—C376.38 (4)
(xd) top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.1Dx = 1.399 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5997 reflections
a = 5.9534 (5) Åθ = 3.3–58.0°
b = 12.2772 (10) ŵ = 0.12 mm1
c = 5.7882 (5) ÅT = 123 K
V = 423.07 (6) Å3Rhombic, colorless
Z = 40.33 × 0.26 × 0.18 mm
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
5997 independent reflections
Radiation source: fine-focus sealed tube5719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 58.0°, θmin = 3.3°
Absorption correction: multi-scan
SADABS, Bruker(2001)
h = 014
Tmin = 0.645, Tmax = 0.751k = 029
5997 measured reflectionsl = 013
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018All H-atom parameters refined
wR(F2) = 0.038 w2 = 1/[s2(Fo2)]
S = 1.15(Δ/σ)max = 0.00003
6000 reflectionsΔρmax = 0.15 e Å3
130 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: Becker-Coppens type 1 Lorentzian isotropic, Becker, P.J. & Coppens, P. (1974) Acta Cryst., A30, 129-153.
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 1.03 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72759 (3)0.084002 (13)0.62528 (3)0.013
O20.44363 (3)0.184278 (14)0.76120 (3)0.013
N10.64930 (2)0.137732 (11)0.18381 (2)0.01
C10.55587 (2)0.140907 (10)0.60035 (2)0.009
C20.46911 (2)0.161203 (10)0.35465 (2)0.009
C30.26393 (3)0.090927 (15)0.30334 (3)0.014
H110.7050770.0568610.1920420.025
H120.7876830.1891230.2091660.026
H130.5830410.1481760.0175390.024
H210.4261910.2477730.3387090.023
H310.1963980.1092590.1311510.038
H320.1313190.1052660.4316190.04
H330.3063420.003890.3037170.038
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0148920.0140330.0113260.0053120.0021350.001247
O20.0172330.0157780.0070550.0045840.0006930.001078
N10.0117030.0110890.0073470.0005040.0004210.000014
C10.0111570.0081470.0066410.0007870.0007870.000036
C20.0106350.0086580.0069660.0011220.0006890.000063
C30.0125820.0180150.011430.0028930.0014230.000579
H110.0307120.0186330.0256650.0089780.0029060.00132
H120.0212190.0307590.0256620.0095670.0016080.001302
H130.0292980.0314410.0120510.0017780.0027630.000883
H210.0322080.0142230.0235590.0067760.0021860.000954
H310.0369260.0536190.0237250.0092910.013090.005389
H320.025150.0612510.0339390.0074670.0104650.009091
H330.0410210.0217190.051070.006470.0052410.001956
Geometric parameters (Å, º) top
O1—C11.2466 (2)C2—C31.5247 (2)
O2—C11.2637 (2)C2—H211.0970 (1)
N1—H111.0480 (1)C3—H311.0980 (2)
N1—H121.0480 (1)C3—H321.0980 (2)
N1—H131.0480 (1)C3—H331.0980 (2)
C1—C21.5335 (2)
H11—N1—H12108.357 (11)C3—C2—H21110.200 (12)
H11—N1—H13106.077 (11)C2—C3—H31110.742 (14)
H12—N1—H13110.539 (11)C2—C3—H32110.707 (14)
O1—C1—O2125.770 (15)C2—C3—H33111.475 (14)
O1—C1—C2118.335 (13)H31—C3—H32108.523 (15)
O2—C1—C2115.895 (13)H31—C3—H33106.589 (14)
C1—C2—C3111.012 (11)H32—C3—H33108.665 (15)
C1—C2—H21108.293 (10)
O1—C1—C2—C3103.531 (17)C1—C2—C3—H3256.204 (13)
O1—C1—C2—H21135.368 (17)C1—C2—C3—H3364.885 (14)
O2—C1—C2—C376.344 (15)H21—C2—C3—H3156.650 (14)
O2—C1—C2—H2144.757 (13)H21—C2—C3—H3263.769 (14)
C1—C2—C3—H31176.623 (18)H21—C2—C3—H33175.143 (18)
(xd_dispersion) top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.1Dx = 1.399 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5997 reflections
a = 5.9534 (5) Åθ = 3.3–58.0°
b = 12.2772 (10) ŵ = 0.12 mm1
c = 5.7882 (5) ÅT = 123 K
V = 423.07 (6) Å3Rhombic, colorless
Z = 40.33 × 0.26 × 0.18 mm
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
5997 independent reflections
Radiation source: fine-focus sealed tube5719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 58.0°, θmin = 3.3°
Absorption correction: multi-scan
SADABS, Bruker(2001)
h = 014
Tmin = 0.645, Tmax = 0.751k = 029
5997 measured reflectionsl = 013
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021All H-atom parameters refined
wR(F2) = 0.048 w2 = 1/[s2(Fo2)]
S = 1.44(Δ/σ)max = 0.00001
6000 reflectionsΔρmax = 0.32 e Å3
130 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: Becker-Coppens type 1 Lorentzian isotropic, Becker, P.J. & Coppens, P. (1974) Acta Cryst., A30, 129-153.
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 1.04 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72757 (4)0.083980 (17)0.62520 (4)0.014
O20.44364 (4)0.184298 (17)0.76117 (3)0.013
N10.64931 (3)0.137740 (13)0.18379 (3)0.01
C10.55587 (3)0.140895 (12)0.60033 (3)0.009
C20.46912 (3)0.161199 (13)0.35461 (3)0.009
C30.26392 (3)0.090938 (19)0.30334 (4)0.014
H110.7050750.0568680.1920420.023
H120.7876870.1891280.2091610.022
H130.5830310.1481760.0175180.021
H210.4261930.2477690.3387110.022
H310.1963920.1092590.1311490.033
H320.1313110.1052660.4316250.031
H330.3063450.0039020.3037180.031
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.015450.014540.011220.005730.001460.0018
O20.017670.015650.007010.004910.000720.00064
N10.011950.010460.007260.000650.000430.00024
C10.01110.007980.006560.000650.000740.00005
C20.010630.009110.006770.001190.000740.00017
C30.011750.017740.011670.00220.002180.00026
H110.025110.018090.02570.006180.002630.00119
H120.020080.024740.021820.0050.001230.0015
H130.025810.025390.012640.000760.001080.00021
H210.02770.015650.021660.005570.000370.00097
H310.031490.044970.021690.004660.011650.004
H320.020930.044260.028010.00230.005860.00185
H330.033560.020330.038910.00410.004330.00215
Geometric parameters (Å, º) top
O1—C11.2465 (2)C2—C31.5246 (3)
O2—C11.2638 (2)C2—H211.0970 (1)
N1—H111.0480 (2)C3—H311.0980 (2)
N1—H121.0480 (2)C3—H321.0980 (2)
N1—H131.0480 (1)C3—H331.0980 (2)
C1—C21.5335 (2)
H11—N1—H12108.356 (14)C3—C2—H21110.192 (15)
H11—N1—H13106.080 (14)C2—C3—H31110.743 (17)
H12—N1—H13110.553 (14)C2—C3—H32110.723 (17)
O1—C1—O2125.795 (19)C2—C3—H33111.464 (17)
O1—C1—C2118.319 (16)H31—C3—H32108.528 (18)
O2—C1—C2115.886 (16)H31—C3—H33106.582 (18)
C1—C2—C3111.003 (14)H32—C3—H33108.660 (19)
C1—C2—H21108.286 (13)
O1—C1—C2—C3103.54 (2)C1—C2—C3—H3256.194 (17)
O1—C1—C2—H21135.38 (2)C1—C2—C3—H3364.892 (17)
O2—C1—C2—C376.352 (19)H21—C2—C3—H3156.676 (17)
O2—C1—C2—H2144.730 (17)H21—C2—C3—H3263.760 (17)
C1—C2—C3—H31176.63 (2)H21—C2—C3—H33175.15 (2)
(xd_gamma) top
Crystal data top
C3H7NO2F(000) = 192
Mr = 89.1Dx = 1.399 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5997 reflections
a = 5.9534 (5) Åθ = 3.3–58.0°
b = 12.2772 (10) ŵ = 0.12 mm1
c = 5.7882 (5) ÅT = 123 K
V = 423.07 (6) Å3Rhombic, colorless
Z = 40.33 × 0.26 × 0.18 mm
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
5997 independent reflections
Radiation source: fine-focus sealed tube5719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 58.0°, θmin = 3.3°
Absorption correction: multi-scan
SADABS, Bruker(2001)
h = 014
Tmin = 0.645, Tmax = 0.751k = 029
5997 measured reflectionsl = 013
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 w2 = 1/[s2(Fo2)]
wR(F2) = 0.049(Δ/σ)max = 0.0001
S = 1.48Δρmax = 0.25 e Å3
6000 reflectionsΔρmin = 0.27 e Å3
130 parametersExtinction correction: Becker-Coppens type 1 Lorentzian isotropic, Becker, P.J. & Coppens, P. (1974) Acta Cryst., A30, 129-153.
0 restraintsExtinction coefficient: 1.03 (4)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72758 (4)0.083979 (18)0.62526 (4)0.014
O20.44362 (4)0.184293 (18)0.76121 (3)0.013
N10.64931 (3)0.137733 (13)0.18379 (3)0.01
C10.55586 (3)0.140893 (13)0.60033 (3)0.009
C20.46909 (3)0.161207 (13)0.35466 (3)0.009
C30.26394 (4)0.090932 (19)0.30336 (4)0.014
H110.705080.0568620.1920420.022
H120.787680.1891250.2091670.022
H130.5830370.1481780.0175210.021
H210.4261860.2477780.3387070.022
H310.196410.1092580.1311680.034
H320.1313140.1052660.4316270.032
H330.3063380.0038930.3037170.032
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.014510.015120.010970.005460.001460.00106
O20.016390.015950.007220.005010.000140.00103
N10.012310.010260.007180.00010.000290.00008
C10.010630.008350.006810.000660.000770.00026
C20.011060.008860.006940.001060.000760.0002
C30.012740.017960.011250.00270.002130.00109
H110.024110.017740.025370.00520.002780.00155
H120.021320.024660.020060.006070.000990.00096
H130.025670.024970.013040.000260.001370.00002
H210.028690.015420.021830.005590.000590.00079
H310.034330.046940.0220.005930.012850.00384
H320.021930.04470.029350.003590.006610.00408
H330.036510.020380.038190.004520.00320.00314
Geometric parameters (Å, º) top
O1—C11.2467 (2)C2—C31.5246 (3)
O2—C11.2640 (3)C2—H211.0970 (2)
N1—H111.0480 (2)C3—H311.0980 (2)
N1—H121.0480 (2)C3—H321.0980 (2)
N1—H131.0480 (2)C3—H331.0980 (2)
C1—C21.5333 (2)
H11—N1—H12108.357 (15)C3—C2—H21110.204 (15)
H11—N1—H13106.085 (14)C2—C3—H31110.743 (18)
H12—N1—H13110.547 (14)C2—C3—H32110.712 (17)
O1—C1—O2125.770 (19)C2—C3—H33111.483 (18)
O1—C1—C2118.344 (17)H31—C3—H32108.521 (19)
O2—C1—C2115.885 (16)H31—C3—H33106.577 (18)
C1—C2—C3111.008 (15)H32—C3—H33108.664 (19)
C1—C2—H21108.307 (13)
O1—C1—C2—C3103.52 (2)C1—C2—C3—H3256.218 (17)
O1—C1—C2—H21135.37 (2)C1—C2—C3—H3364.879 (18)
O2—C1—C2—C376.37 (2)H21—C2—C3—H3156.647 (18)
O2—C1—C2—H2144.746 (17)H21—C2—C3—H3263.773 (18)
C1—C2—C3—H31176.64 (2)H21—C2—C3—H33175.13 (2)
 

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds