Download citation
Download citation
link to html
The Fourier transform method for analytical determination of the two-center Coulomb integrals needed for evaluation of the electrostatic interaction energies between pseudoatom-based charge distributions is presented, and its Fortran-based implementation using the 128-bit floating-point arithmetic in the XDPROP module of the XD software is described. In combination with mathematical libraries included in the Lahey/Fujitsu LF64 Linux compiler, the new implementation outperforms the previously reported Löwdin α-function technique [Nguyen et al. (2018). Acta Cryst. A74, 524–536] in terms of precision of the determined individual Coulomb integrals regardless of whether the latter uses the 64-, 80- or 128-bit precision floating-point format, all the while being only marginally slower. When the Löwdin α-function or Fourier transform method is combined with a multipole moment approximation for large interatomic separations (such a hybrid scheme is called the analytical exact potential and multipole moment method, aEP/MM) the resulting electrostatic interaction energies are evaluated with a precision of ≤5 × 10−5 kJ mol−1 for the current set of benchmark systems composed of H, C, N and O atoms and ranging in size from water–water to dodecapeptide–dodecapeptide dimers. Using a 2012 4.0 GHz AMD FX-8350 computer processor, the two recommended aEP/MM implementations, the 80-bit precision Löwdin α-function and 128-bit precision Fourier transform methods, evaluate the total electrostatic interaction energy between two 225-atom monomers of the benchmark dodecapeptide molecule in 6.0 and 7.9 s, respectively, versus 3.1 s for the previously reported 64-bit Löwdin α-function approach.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053273319002535/ae5056sup1.pdf
Supporting information


Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds