Download citation
Download citation
link to html
The title CoII complex, [Co(C6H6N4S2)(C4H4O4S)(H2O)]·2H2O, assumes a distorted octa­hedral coordination geometry formed by a diamino­bithia­zole (DABT) ligand, a thio­diacetate dianion (TDA) and a water mol­ecule. The TDA dianion chelates to the CoII atom with a facial configuration. Within the chelating DABT ligand, the two thia­zole rings are twisted with respect to each other [dihedral angle = 12.04 (9)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028059/ac6195sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028059/ac6195Isup2.hkl
Contains datablock I

CCDC reference: 287428

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.042
  • wR factor = 0.102
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT411_ALERT_2_B Short Inter H...H Contact H8B .. H8B .. 2.06 Ang.
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Co - S3 .. 7.97 su PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S2 in Main Residue . ?
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Transition metal complexes of diaminobithiazole (DABT) have shown potential application in some fields (Waring, 1981; Fisher et al., 1985). As part of our ongoing investigation of metal complexes incorporating the DABT ligand (Liu et al., 2001), the title CoII compound, (I), was prepared and its X-ray crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. The CoII complex assumes a distorted octahedral coordination geometry formed by a DABT ligand, a thiodiacetate dianion (TDA) and a coordinated water molecule. The tridentate TDA dianion chelates to the CoII atom with a facial configuration. Both chelating five-membered rings display an envelope configuration, which is consistent with that found in an NiII complex with a chelating TDA ligand (Pan et al., 2005). The DABT ligand chelates to the CoII atom with an average Co—N bond distance of 2.110 (3) Å (Table 1), which is comparable with the value of 2.097 (3) Å found in a corresponding compound, [Co(DABT)(ODA)(H2O)] (ODA is oxydiacetate; Shen et al., 2004). The two thiazole rings of the DABT ligand are twisted with respect to each other around the C3—C4 bond, with a dihedral angle of 12.04 (9)°. This conformation is also found in [Cd(DABT)2Cl2] (Liu et al., 2003), but it differs from the planar configuration of DABT found in [Cu(DABT)Cl2] (Liu et al., 2001).

A partially overlapping arrangement of parallel thiazole rings related by an inversion centre is observed (Fig. 2). The face-to-face separation between the mean planes of the S1-thiazole and S1vi-thiazole rings is 3.558 (18) Å [symmetry code (vi): −x, 1 − y, 1 − z], which is significantly shorter than the thickness of the aromatic ring (3.7 Å) and suggests the existence of ππ stacking. There is extensive hydrogen bonding in the crystal structure of (I) (Table 2).

Experimental top

An aqueous solution (20 ml) containing DABT (0.20 g, 1 mmol) and CoCl2·6H2O (0.24 g, 1 mmol) was mixed with an aqueous solution (10 ml) of H2TDA (0.15 g, 1 mmol) and NaOH(0.08 g, 2 mmol). The mixture was refluxed for 5 h. The solution was cooled to room temperature and then filtered. Single crystals of (I) were obtained from the filtrate after 3 d.

Refinement top

H atoms bonded to O and N atoms were located in a difference Fourier map and refined as riding on their parent atoms, with Uiso(H) = 1.5Ueq(O,N). H atoms bonded to C atoms were placed in calculated positions with C—H = 0.97 (methylene) or 0.93 Å (aromatic), and were included in the final cycles of refinement in a riding mode, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate the hydrogen bonding.
[Figure 2] Fig. 2. A unit-cell packing diagram for (I), showing ππ stacking between the S1-thiazole and S1vi-thiazole rings [symmetry code: (vi) −x, 1 − y, 1 − z]. H atoms have been omitted for clarity.
Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole-κ2N,N')(thiodiacetato- κ3O,S,O')cobalt(II) dihydrate top
Crystal data top
[Co(C6H6N4S2)(C4H4O4S)(H2O)]·2H2OF(000) = 940
Mr = 459.38Dx = 1.798 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6855 reflections
a = 10.6918 (11) Åθ = 3.0–24.0°
b = 7.1329 (7) ŵ = 1.42 mm1
c = 22.794 (2) ÅT = 295 K
β = 102.538 (2)°Prism, pink
V = 1696.9 (3) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3003 independent reflections
Radiation source: fine-focus sealed tube2513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 912
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.665, Tmax = 0.802l = 2719
8649 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.2046P]
where P = (Fo2 + 2Fc2)/3
3003 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(C6H6N4S2)(C4H4O4S)(H2O)]·2H2OV = 1696.9 (3) Å3
Mr = 459.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6918 (11) ŵ = 1.42 mm1
b = 7.1329 (7) ÅT = 295 K
c = 22.794 (2) Å0.30 × 0.20 × 0.15 mm
β = 102.538 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3003 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2513 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.802Rint = 0.031
8649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
3003 reflectionsΔρmin = 0.38 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.26840 (4)0.72267 (6)0.622648 (18)0.02734 (15)
O10.2811 (2)1.0045 (3)0.60165 (11)0.0400 (6)
O20.3663 (3)1.2332 (3)0.55773 (12)0.0512 (7)
O30.3389 (2)0.7742 (4)0.71193 (10)0.0413 (6)
O40.4930 (2)0.8607 (5)0.78787 (11)0.0584 (8)
O50.2792 (2)0.4345 (3)0.64243 (10)0.0367 (6)
H5A0.34490.42060.66910.055*
H5B0.29160.37920.61090.055*
N10.1748 (3)0.6768 (4)0.53176 (11)0.0302 (6)
N20.3336 (3)0.6030 (5)0.47892 (12)0.0446 (8)
H2A0.34450.59590.44020.067*
H2B0.38160.52630.50740.067*
N30.0754 (3)0.7418 (4)0.62842 (12)0.0327 (7)
N40.0705 (3)0.7351 (5)0.73050 (14)0.0563 (10)
H4A0.15570.73020.74200.084*
H4B0.02880.73090.75840.084*
O1W0.1367 (3)0.1883 (5)0.70383 (14)0.0720 (9)
H1C0.14350.28970.68310.108*
H1D0.17750.10170.68340.108*
O2W0.3075 (3)0.8286 (6)0.84951 (13)0.0840 (11)
H2C0.22340.84960.85170.126*
H2D0.33800.85760.81750.126*
S10.10075 (10)0.72328 (13)0.41805 (4)0.0425 (3)
S20.15024 (9)0.77706 (15)0.64843 (5)0.0476 (3)
S30.50173 (8)0.74037 (11)0.61952 (4)0.0314 (2)
C10.2153 (3)0.6608 (5)0.48164 (14)0.0315 (8)
C20.0058 (4)0.7701 (5)0.46259 (16)0.0387 (9)
H20.08920.81230.44840.050*
C30.0476 (3)0.7375 (4)0.52079 (16)0.0321 (8)
C40.0097 (3)0.7561 (4)0.57284 (16)0.0315 (8)
C50.1329 (4)0.7772 (5)0.57527 (17)0.0413 (9)
H50.20000.79020.54190.050*
C60.0148 (3)0.7475 (5)0.67259 (17)0.0380 (9)
C70.3688 (3)1.0734 (5)0.57931 (14)0.0361 (8)
C80.4846 (4)0.9525 (5)0.57599 (16)0.0415 (9)
H8A0.56131.02730.58920.050*
H8B0.47970.91950.53430.050*
C90.5526 (3)0.8267 (6)0.69543 (15)0.0398 (9)
H9A0.62650.75430.71540.048*
H9B0.58050.95560.69360.048*
C100.4539 (3)0.8206 (5)0.73385 (15)0.0351 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0191 (3)0.0367 (3)0.0250 (3)0.00001 (18)0.00215 (17)0.00213 (18)
O10.0277 (13)0.0359 (13)0.0550 (16)0.0018 (11)0.0056 (11)0.0012 (11)
O20.063 (2)0.0417 (16)0.0455 (17)0.0050 (13)0.0047 (14)0.0116 (12)
O30.0232 (13)0.0723 (18)0.0282 (13)0.0090 (12)0.0052 (10)0.0101 (11)
O40.0328 (15)0.109 (2)0.0313 (15)0.0191 (15)0.0024 (11)0.0236 (15)
O50.0310 (14)0.0415 (14)0.0337 (13)0.0007 (10)0.0020 (10)0.0032 (10)
N10.0267 (15)0.0344 (15)0.0280 (15)0.0020 (12)0.0026 (11)0.0014 (12)
N20.0387 (19)0.065 (2)0.0313 (16)0.0063 (15)0.0094 (13)0.0020 (14)
N30.0205 (15)0.0410 (17)0.0361 (17)0.0005 (12)0.0049 (12)0.0028 (12)
N40.0300 (18)0.103 (3)0.039 (2)0.0022 (17)0.0123 (15)0.0003 (17)
O1W0.068 (2)0.079 (2)0.079 (2)0.0111 (18)0.0395 (18)0.0050 (18)
O2W0.074 (2)0.131 (3)0.056 (2)0.023 (2)0.0328 (17)0.015 (2)
S10.0474 (6)0.0484 (6)0.0277 (5)0.0074 (4)0.0005 (4)0.0024 (4)
S20.0225 (5)0.0646 (7)0.0577 (7)0.0013 (4)0.0130 (4)0.0047 (5)
S30.0255 (5)0.0395 (5)0.0297 (5)0.0047 (3)0.0072 (3)0.0026 (3)
C10.0320 (19)0.0351 (18)0.0258 (18)0.0015 (15)0.0028 (14)0.0010 (14)
C20.034 (2)0.039 (2)0.037 (2)0.0048 (15)0.0058 (16)0.0010 (15)
C30.0269 (19)0.0290 (17)0.037 (2)0.0001 (13)0.0003 (15)0.0014 (14)
C40.0248 (18)0.0294 (17)0.038 (2)0.0020 (13)0.0009 (14)0.0010 (14)
C50.027 (2)0.046 (2)0.047 (2)0.0036 (16)0.0013 (16)0.0014 (17)
C60.0238 (19)0.044 (2)0.047 (2)0.0047 (15)0.0096 (16)0.0054 (16)
C70.033 (2)0.039 (2)0.0304 (19)0.0017 (16)0.0043 (15)0.0001 (15)
C80.041 (2)0.047 (2)0.039 (2)0.0002 (18)0.0143 (16)0.0099 (17)
C90.0240 (19)0.061 (2)0.0332 (19)0.0044 (17)0.0039 (14)0.0019 (17)
C100.029 (2)0.043 (2)0.0314 (19)0.0032 (16)0.0028 (15)0.0022 (16)
Geometric parameters (Å, º) top
Co—S32.5143 (10)O1W—H1C0.8751
Co—O12.078 (2)O1W—H1D0.9358
Co—O32.044 (2)O2W—H2C0.9237
Co—O52.102 (2)O2W—H2D0.8849
Co—N12.121 (3)S1—C21.716 (4)
Co—N32.100 (3)S1—C11.741 (3)
O1—C71.260 (4)S2—C51.717 (4)
O2—C71.239 (4)S2—C61.744 (4)
O3—C101.266 (4)S3—C81.797 (3)
O4—C101.245 (4)S3—C91.806 (3)
O5—H5A0.8291C2—C31.346 (5)
O5—H5B0.8541C2—H20.9300
N1—C11.312 (4)C3—C41.455 (5)
N1—C31.397 (4)C4—C51.339 (5)
N2—C11.345 (4)C5—H50.9300
N2—H2A0.9157C7—C81.525 (5)
N2—H2B0.9166C8—H8A0.9700
N3—C61.311 (5)C8—H8B0.9700
N3—C41.394 (4)C9—C101.512 (5)
N4—C61.328 (5)C9—H9A0.9700
N4—H4A0.8924C9—H9B0.9700
N4—H4B0.8533
O3—Co—O191.55 (10)C9—S3—Co94.85 (11)
O3—Co—N394.66 (10)N1—C1—N2124.0 (3)
O1—Co—N393.77 (10)N1—C1—S1113.4 (3)
O3—Co—O588.34 (10)N2—C1—S1122.6 (2)
O1—Co—O5172.83 (9)C3—C2—S1110.8 (3)
N3—Co—O593.39 (10)C3—C2—H2124.6
O3—Co—N1173.61 (10)S1—C2—H2124.6
O1—Co—N187.99 (10)C2—C3—N1114.7 (3)
N3—Co—N179.02 (10)C2—C3—C4128.6 (3)
O5—Co—N192.91 (10)N1—C3—C4116.6 (3)
O3—Co—S382.26 (7)C5—C4—N3115.2 (3)
O1—Co—S380.22 (7)C5—C4—C3129.5 (3)
N3—Co—S3173.13 (8)N3—C4—C3115.3 (3)
O5—Co—S392.66 (7)C4—C5—S2110.8 (3)
N1—Co—S3103.93 (8)C4—C5—H5124.6
C7—O1—Co124.2 (2)S2—C5—H5124.6
C10—O3—Co123.8 (2)N3—C6—N4124.9 (3)
Co—O5—H5A105.8N3—C6—S2113.4 (3)
Co—O5—H5B106.4N4—C6—S2121.7 (3)
H5A—O5—H5B107.5O2—C7—O1124.4 (3)
C1—N1—C3111.3 (3)O2—C7—C8116.6 (3)
C1—N1—Co133.5 (2)O1—C7—C8118.9 (3)
C3—N1—Co111.2 (2)C7—C8—S3115.8 (2)
C1—N2—H2A112.3C7—C8—H8A108.3
C1—N2—H2B122.5S3—C8—H8A108.3
H2A—N2—H2B118.8C7—C8—H8B108.3
C6—N3—C4111.2 (3)S3—C8—H8B108.3
C6—N3—Co134.9 (2)H8A—C8—H8B107.4
C4—N3—Co113.9 (2)C10—C9—S3116.2 (2)
C6—N4—H4A120.2C10—C9—H9A108.2
C6—N4—H4B123.4S3—C9—H9A108.2
H4A—N4—H4B116.4C10—C9—H9B108.2
H1C—O1W—H1D100.1S3—C9—H9B108.2
H2C—O2W—H2D122.9H9A—C9—H9B107.4
C2—S1—C189.69 (16)O4—C10—O3122.6 (3)
C5—S2—C689.52 (18)O4—C10—C9116.1 (3)
C8—S3—C9102.43 (18)O3—C10—C9121.3 (3)
C8—S3—Co94.31 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2Wi0.922.092.943 (4)154
N2—H2B···O2ii0.922.413.168 (4)140
N4—H4A···O30.892.233.003 (4)144
N4—H4B···O1Wiii0.852.152.950 (5)156
O5—H5A···O4iv0.831.852.656 (3)165
O5—H5B···O2ii0.861.902.727 (3)162
O1W—H1C···O50.882.152.879 (4)141
O1W—H1D···O1ii0.942.463.330 (4)154
O2W—H2C···S1v0.922.272.994 (3)135
O2W—H2D···O30.892.483.249 (4)145
O2W—H2D···O40.891.922.678 (4)142
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1, z; (iii) x, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H6N4S2)(C4H4O4S)(H2O)]·2H2O
Mr459.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.6918 (11), 7.1329 (7), 22.794 (2)
β (°) 102.538 (2)
V3)1696.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.665, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
8649, 3003, 2513
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.04
No. of reflections3003
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co—S32.5143 (10)Co—O52.102 (2)
Co—O12.078 (2)Co—N12.121 (3)
Co—O32.044 (2)Co—N32.100 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2Wi0.922.092.943 (4)154
N2—H2B···O2ii0.922.413.168 (4)140
N4—H4A···O30.892.233.003 (4)144
N4—H4B···O1Wiii0.852.152.950 (5)156
O5—H5A···O4iv0.831.852.656 (3)165
O5—H5B···O2ii0.861.902.727 (3)162
O1W—H1C···O50.882.152.879 (4)141
O1W—H1D···O1ii0.942.463.330 (4)154
O2W—H2C···S1v0.922.272.994 (3)135
O2W—H2D···O30.892.483.249 (4)145
O2W—H2D···O40.891.922.678 (4)142
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1, z; (iii) x, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds