Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C21H18F3N3O6S3, has a chair conformation that is similar to the majority of the 1,3,5-tri­aza­cyclo­hexane rings reported in the literature. It is the product of a condensation reaction between fluoro­benzene­sulfon­amide and form­aldehyde, and its empirical and structural formula were determined by X-ray analysis. The mol­ecules are located on mirror planes in space group Pnma.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803015228/ac6050sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803015228/ac6050Isup2.hkl
Contains datablock I

CCDC reference: 221706

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.096
  • Data-to-parameter ratio = 13.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

1,3,5-tris(4-fluorobensenesulfonyl)-1,3,5-triazacyclohexane top
Crystal data top
C21H18F3N3O6S3Dx = 1.591 Mg m3
Mr = 561.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 66 reflections
a = 12.2603 (12) Åθ = 10.0–13.5°
b = 16.4739 (13) ŵ = 0.39 mm1
c = 11.6085 (6) ÅT = 293 K
V = 2344.6 (3) Å3Block, colorless
Z = 40.45 × 0.43 × 0.34 mm
F(000) = 1152
Data collection top
Bruker P4
diffractometer
1942 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
2θ/ω scansh = 115
Absorption correction: integration
(Wuensch & Prewitt, 1965)
k = 208
Tmin = 0.855, Tmax = 0.893l = 114
2707 measured reflections3 standard reflections every 97 reflections
2390 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0405P)2 + 1.0368P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2390 reflectionsΔρmax = 0.41 e Å3
173 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76747 (19)0.25000.0933 (2)0.0366 (6)
S10.76894 (6)0.25000.05061 (7)0.0406 (2)
O1A0.72028 (13)0.32531 (11)0.08186 (14)0.0557 (5)
C110.9057 (2)0.25000.0955 (2)0.0362 (7)
C120.95990 (19)0.32300 (14)0.10891 (19)0.0439 (5)
H120.92230.37180.10170.053*
C131.0698 (2)0.32304 (14)0.1330 (2)0.0488 (6)
H131.10760.37150.14250.059*
C141.1222 (3)0.25000.1428 (3)0.0473 (8)
F11.23089 (16)0.25000.1620 (2)0.0717 (7)
C20.80070 (16)0.32319 (13)0.15346 (19)0.0378 (5)
H2A0.76370.32640.22720.045*
H2B0.78080.37060.10850.045*
N30.92022 (13)0.32171 (10)0.17156 (14)0.0329 (4)
S30.97596 (4)0.40764 (3)0.21495 (5)0.03618 (17)
O3A1.09081 (11)0.39392 (10)0.21603 (15)0.0472 (4)
O3B0.92995 (14)0.46931 (10)0.14423 (14)0.0501 (4)
C310.93145 (17)0.42054 (12)0.35776 (19)0.0356 (5)
C320.99331 (18)0.38818 (14)0.4467 (2)0.0441 (5)
H321.06030.36400.43140.053*
C330.9546 (2)0.39232 (15)0.5577 (2)0.0493 (6)
H330.99500.37150.61870.059*
C340.8552 (2)0.42777 (15)0.5763 (2)0.0488 (6)
F30.81735 (14)0.43195 (11)0.68598 (13)0.0720 (5)
C350.79260 (19)0.46008 (15)0.4901 (2)0.0492 (6)
H350.72560.48400.50630.059*
C360.83109 (17)0.45631 (14)0.3793 (2)0.0427 (5)
H360.79020.47760.31890.051*
C40.9539 (2)0.25000.2365 (3)0.0337 (6)
H4A1.03240.25000.24680.040*
H4B0.91980.25000.31190.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0261 (12)0.0472 (15)0.0364 (13)0.0000.0024 (10)0.000
S10.0281 (4)0.0561 (5)0.0377 (4)0.0000.0042 (3)0.000
O1A0.0435 (9)0.0757 (12)0.0480 (9)0.0179 (9)0.0049 (8)0.0107 (9)
C110.0321 (15)0.0435 (17)0.0331 (15)0.0000.0010 (12)0.000
C120.0438 (12)0.0397 (12)0.0482 (13)0.0045 (10)0.0043 (10)0.0040 (10)
C130.0478 (13)0.0445 (14)0.0542 (14)0.0103 (11)0.0068 (11)0.0050 (11)
C140.0341 (16)0.060 (2)0.0481 (19)0.0000.0079 (14)0.000
F10.0368 (11)0.0877 (17)0.0905 (17)0.0000.0144 (11)0.000
C20.0253 (10)0.0466 (13)0.0415 (11)0.0064 (9)0.0025 (8)0.0024 (10)
N30.0243 (8)0.0370 (10)0.0374 (9)0.0027 (7)0.0024 (7)0.0001 (7)
S30.0290 (3)0.0341 (3)0.0455 (3)0.0004 (2)0.0005 (2)0.0034 (2)
O3A0.0277 (7)0.0485 (9)0.0655 (11)0.0041 (7)0.0044 (7)0.0019 (8)
O3B0.0523 (10)0.0409 (9)0.0571 (10)0.0028 (8)0.0008 (8)0.0133 (8)
C310.0301 (10)0.0324 (11)0.0444 (11)0.0005 (8)0.0042 (9)0.0041 (9)
C320.0343 (11)0.0449 (12)0.0531 (14)0.0053 (10)0.0076 (10)0.0054 (11)
C330.0525 (14)0.0514 (14)0.0441 (13)0.0043 (12)0.0125 (11)0.0047 (11)
C340.0539 (14)0.0484 (13)0.0441 (13)0.0055 (11)0.0031 (11)0.0142 (11)
F30.0812 (12)0.0852 (12)0.0496 (9)0.0033 (9)0.0109 (8)0.0173 (8)
C350.0396 (12)0.0487 (14)0.0593 (15)0.0054 (11)0.0035 (11)0.0139 (12)
C360.0342 (11)0.0408 (12)0.0531 (13)0.0054 (10)0.0047 (10)0.0054 (11)
C40.0287 (14)0.0342 (15)0.0382 (15)0.0000.0038 (12)0.000
Geometric parameters (Å, º) top
N1—C21.452 (2)N3—S31.6506 (17)
N1—C2i1.452 (2)S3—O3B1.4228 (16)
N1—S11.670 (3)S3—O3A1.4262 (15)
S1—O1Ai1.4237 (17)S3—C311.758 (2)
S1—O1A1.4237 (17)C31—C361.387 (3)
S1—C111.756 (3)C31—C321.388 (3)
C11—C121.383 (3)C32—C331.374 (3)
C11—C12i1.383 (3)C32—H320.9300
C12—C131.376 (3)C33—C341.368 (3)
C12—H120.9300C33—H330.9300
C13—C141.369 (3)C34—F31.357 (3)
C13—H130.9300C34—C351.369 (4)
C14—F11.351 (4)C35—C361.372 (3)
C14—C13i1.369 (3)C35—H350.9300
C2—N31.481 (2)C36—H360.9300
C2—H2A0.9700C4—N3i1.461 (2)
C2—H2B0.9700C4—H4A0.9700
N3—C41.461 (2)C4—H4B0.9700
C2—N1—C2i112.3 (2)O3B—S3—O3A120.65 (10)
C2—N1—S1118.56 (13)O3B—S3—N3105.80 (9)
C2i—N1—S1118.56 (13)O3A—S3—N3105.99 (9)
O1Ai—S1—O1A121.26 (15)O3B—S3—C31109.55 (10)
O1Ai—S1—N1104.49 (9)O3A—S3—C31108.49 (10)
O1A—S1—N1104.49 (9)N3—S3—C31105.24 (9)
O1Ai—S1—C11108.95 (8)C36—C31—C32120.9 (2)
O1A—S1—C11108.95 (8)C36—C31—S3119.76 (17)
N1—S1—C11107.86 (13)C32—C31—S3119.06 (16)
C12—C11—C12i120.9 (3)C33—C32—C31119.3 (2)
C12—C11—S1119.49 (14)C33—C32—H32120.4
C12i—C11—S1119.49 (14)C31—C32—H32120.4
C13—C12—C11119.6 (2)C34—C33—C32118.5 (2)
C13—C12—H12120.2C34—C33—H33120.7
C11—C12—H12120.2C32—C33—H33120.7
C14—C13—C12118.4 (2)F3—C34—C33118.3 (2)
C14—C13—H13120.8F3—C34—C35118.3 (2)
C12—C13—H13120.8C33—C34—C35123.3 (2)
F1—C14—C13i118.45 (15)C34—C35—C36118.4 (2)
F1—C14—C13118.45 (15)C34—C35—H35120.8
C13i—C14—C13123.1 (3)C36—C35—H35120.8
N1—C2—N3109.41 (17)C35—C36—C31119.6 (2)
N1—C2—H2A109.8C35—C36—H36120.2
N3—C2—H2A109.8C31—C36—H36120.2
N1—C2—H2B109.8N3i—C4—N3107.9 (2)
N3—C2—H2B109.8N3i—C4—H4A110.1
H2A—C2—H2B108.2N3—C4—H4A110.1
C4—N3—C2111.49 (18)N3i—C4—H4B110.1
C4—N3—S3114.78 (13)N3—C4—H4B110.1
C2—N3—S3116.03 (13)H4A—C4—H4B108.4
N1—C2—N3—C458.0 (2)C2—N1—S1—C1171.01 (16)
C2—N3—C4—N3i59.3 (3)C2—N3—S3—C3170.41 (16)
N3—C4—N3i—C2i59.3 (3)C4—N3—S3—C3162.00 (18)
C4—N3i—C2i—N158.0 (2)
Symmetry code: (i) x, y+1/2, z.
Comparison of torsion angles (°) in the 1,3,5-triazacyclohexane ring in the CSD with those (I) top
TorsionAverageaMinimumMaximum(I)
N1—C2—N3—C4-57.193-62.495-42.857-58.0 (2)
C2—N3—C4—N557.49945.48464.05259.3 (3)
N3—C4—N5—C6-56.289-62.231-46.254-59.3 (3)
C4—N5—C6—N155.06344.80961.292-58.0 (2)
N5—C6—N1—C2-55.192-61.488-42.518-59.3 (3)
C6—N1—C2—N355.87141.29560.66059.3 (3)
Notes: (a) CSD (Version 5.24 of November 2002; Allen, 2002).
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds