Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The single-crystal structure of the title compound, [In(C9H6NO)3], is described. Quinolinolates of the elements of the group IIIB (denoted by MQ3), Al, Ga, and In, have been of continuous interest to organometallic and physical chemists, in particular, for the last 50 years. Organic light-emitting diodes (OLEDs) utilizing GaQ3 and InQ3, the gallium and indium analogs, respectively, of the most widely used OLED material AlQ3, were first explored in the early 1980s and continue to be the subject of current research. To the best of our knowledge, the structure reported here is the first-ever facial MQ3-type structure, confirmed by single-crystal X-ray crystallography.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009231/ac6038sup1.cif
Contains datablocks I, Inq3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009231/ac6038Isup2.hkl
Contains datablock I

CCDC reference: 214768

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.050
  • wR factor = 0.150
  • Data-to-parameter ratio = 15.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.743 RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.112 PLAT_601 Alert C Structure Contains Solvent Accessible VOIDS of 36.00 A   3 General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.944 Tmax scaled 0.936 Tmin scaled 0.488
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

In 1987, efficient electroluminescence from an organic light-emitting diode (OLED) device using low molecular weight organic materials was first reported (Tang & Van Slyke, 1987). Their device was constructed of two active layers and used the metal–quinolinolate tris(8-hydroxyquinoline)aluminium. This discovery generated renewed interest in metal quinolinolates. The tris-chelate 8-hydroxyquinoline metal complexes can occur in two different geometrical forms, viz. facial or meridional. To date, all published Alq3 single-crystal structures (including different polymorphs and solvates) and Gaq3 structures were found to be meridional isomers (Brinkmann et al., 2000; Ul-Haque et al., 1991; Fujii et al., 1996; Wang et al., 1999). Single-crystal structures of facial isomers of Meq3-type complexes have been elusive so far. We report here the crystal structure of the title compound, Inq3, (I).

The molecular structure of Inq3 (Fig. 1) is a six-coordinated indium compound. The angles around the In atom indicate approximate octahedral geometry. The average In—O and In—N distances are 2.108 and 2.261 Å, respectively. There is intermolecular ππ stacking of the ligands (8-hydroxyquinolines) in a multidirectional fashion. Such intermolecular stacking was also observed in the Gaq3 structure (Wang et al., 1999). The ligands in Inq3 are stacked in a unit cell with interplanar distances in the range 3.406–3.428 Å, which is comparable to 3.35–3.41 Å for Gaq3 (Fig. 2).

Experimental top

Inq3 was synthesized according to established methods (Lytle et al., 1973). Inq3 was chemically purified by washing and recrystallization and subjected to vacuum temperature-gradient sublimation three consecutive times until the purity of 99.9% was achieved. The purity was determined by NMR in d6-DMSO. We note that although the remaining impurities could not be positively characterized, they could consist of different forms, e.g. isomers or polymorphs, of the target compound. Inq3 was sublimed at 0.6 Torr and the temperature was gradually increased from 533 to 573 K over a period of 1–3 d. It was also characterized by HPLC, LC—MS, and ESIMS, showing results consistent with structure and purity determined by NMR.

Refinement top

The quality of the Inq3 crystals was not superior as indicated by a rather high Rint (0.1115) value. There was a minor twin component in the crystals, which was left untreated. During subsequent refinement, positional parameters of H atoms were calculated geometrically and allowed to ride on the C atoms to which they were bonded.

Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001) and Materials Studio (Accelrys, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound, (I), showing the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of Inq3, illustrating the stacking of 8-hydroxyquinoline ligands. Stacking distances along various planes are indicated.
Tris(quinolin-8-olato)indium top
Crystal data top
[In(C9H6NO)3]Z = 2
Mr = 547.26F(000) = 548
Triclinic, P1Dx = 1.641 Mg m3
a = 6.1860 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.436 (3) ÅCell parameters from 10088 reflections
c = 14.725 (3) Åθ = 1.0–26.7°
α = 65.63 (3)°µ = 1.10 mm1
β = 88.15 (3)°T = 293 K
γ = 83.55 (3)°Needle, yellow
V = 1107.7 (4) Å30.6 × 0.07 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
4647 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.112
Detector resolution: 9 pixels mm-1θmax = 26.8°, θmin = 4.0°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1615
Tmin = 0.517, Tmax = 0.991l = 1814
11360 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.74 w = 1/[σ2(Fo2) + (0.1127P)2]
where P = (Fo2 + 2Fc2)/3
4647 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[In(C9H6NO)3]γ = 83.55 (3)°
Mr = 547.26V = 1107.7 (4) Å3
Triclinic, P1Z = 2
a = 6.1860 (12) ÅMo Kα radiation
b = 13.436 (3) ŵ = 1.10 mm1
c = 14.725 (3) ÅT = 293 K
α = 65.63 (3)°0.6 × 0.07 × 0.06 mm
β = 88.15 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4647 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2896 reflections with I > 2σ(I)
Tmin = 0.517, Tmax = 0.991Rint = 0.112
11360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.74Δρmax = 0.59 e Å3
4647 reflectionsΔρmin = 1.05 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles, and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc., and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors, based on ALL data, will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.78291 (5)0.80366 (3)0.31744 (3)0.03885 (18)
O10.9653 (6)0.7401 (4)0.2257 (3)0.0514 (11)
O20.9104 (6)0.9563 (4)0.2681 (3)0.0501 (11)
O30.9595 (6)0.7262 (4)0.4526 (3)0.0512 (11)
N10.6030 (7)0.6614 (4)0.3284 (4)0.0410 (11)
N20.5482 (6)0.9168 (4)0.1931 (3)0.0392 (11)
N30.5591 (7)0.8395 (4)0.4263 (4)0.0422 (12)
C10.6892 (9)0.6190 (5)0.2638 (4)0.0422 (14)
C20.8812 (9)0.6640 (5)0.2103 (4)0.0463 (15)
C30.9621 (11)0.6197 (6)0.1446 (5)0.0595 (18)
H31.08660.64460.10910.071*
C40.8643 (14)0.5394 (7)0.1296 (6)0.072 (2)
H40.92410.51300.08400.087*
C50.6841 (13)0.4984 (6)0.1796 (6)0.068 (2)
H50.62110.44520.16760.082*
C60.5931 (11)0.5365 (6)0.2492 (5)0.0565 (17)
C70.4094 (11)0.4974 (6)0.3076 (6)0.0633 (19)
H70.34290.44200.30100.076*
C80.3303 (10)0.5379 (6)0.3713 (6)0.0620 (19)
H80.21070.51080.40990.074*
C90.4303 (9)0.6227 (5)0.3799 (5)0.0511 (16)
H90.37230.65250.42340.061*
C100.6005 (8)1.0214 (5)0.1571 (4)0.0386 (13)
C110.7928 (9)1.0398 (5)0.1984 (4)0.0427 (14)
C120.8476 (11)1.1470 (6)0.1617 (5)0.0577 (17)
H120.97071.16180.18650.069*
C130.7189 (13)1.2328 (6)0.0877 (6)0.068 (2)
H130.75961.30360.06460.082*
C140.5351 (13)1.2167 (7)0.0480 (6)0.069 (2)
H140.45191.27550.00050.083*
C150.4752 (10)1.1093 (6)0.0822 (4)0.0508 (16)
C160.2919 (10)1.0823 (7)0.0459 (5)0.061 (2)
H160.20371.13730.00350.074*
C170.2436 (10)0.9774 (7)0.0823 (5)0.0605 (19)
H170.12380.95970.05770.073*
C180.3754 (8)0.8964 (5)0.1569 (4)0.0455 (15)
H180.33980.82450.18230.055*
C190.6566 (8)0.8026 (5)0.5172 (4)0.0400 (14)
C200.8694 (9)0.7425 (5)0.5283 (4)0.0424 (14)
C210.9677 (10)0.7041 (6)0.6215 (5)0.0548 (17)
H211.10320.66300.63310.066*
C220.8651 (13)0.7264 (6)0.6989 (5)0.064 (2)
H220.93730.70000.76020.077*
C230.6666 (13)0.7844 (6)0.6886 (5)0.0622 (19)
H230.60470.79760.74150.075*
C240.5557 (10)0.8241 (5)0.5963 (5)0.0474 (15)
C250.3491 (11)0.8844 (6)0.5765 (6)0.064 (2)
H250.27650.90020.62610.076*
C260.2561 (10)0.9194 (7)0.4852 (6)0.064 (2)
H260.11970.95980.47200.077*
C270.3628 (8)0.8955 (5)0.4107 (5)0.0495 (16)
H270.29520.91920.34870.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.0294 (2)0.0494 (3)0.0378 (3)0.00411 (16)0.00044 (15)0.0180 (2)
O10.042 (2)0.062 (3)0.057 (3)0.013 (2)0.0149 (19)0.030 (2)
O20.040 (2)0.058 (3)0.052 (3)0.0154 (19)0.0029 (19)0.020 (2)
O30.035 (2)0.068 (3)0.046 (3)0.0054 (18)0.0069 (18)0.022 (2)
N10.037 (2)0.041 (3)0.043 (3)0.005 (2)0.004 (2)0.015 (2)
N20.032 (2)0.048 (3)0.037 (3)0.006 (2)0.0013 (19)0.016 (2)
N30.039 (2)0.049 (3)0.043 (3)0.002 (2)0.003 (2)0.024 (3)
C10.047 (3)0.036 (3)0.034 (3)0.002 (2)0.007 (2)0.005 (3)
C20.044 (3)0.053 (4)0.038 (3)0.009 (3)0.003 (3)0.018 (3)
C30.070 (4)0.055 (5)0.050 (4)0.008 (3)0.003 (3)0.021 (4)
C40.110 (6)0.058 (5)0.052 (5)0.014 (5)0.005 (4)0.032 (4)
C50.086 (5)0.052 (5)0.071 (5)0.000 (4)0.017 (4)0.030 (4)
C60.064 (4)0.047 (4)0.057 (4)0.001 (3)0.011 (3)0.019 (4)
C70.069 (4)0.043 (4)0.071 (5)0.014 (3)0.016 (4)0.014 (4)
C80.050 (4)0.053 (5)0.071 (5)0.015 (3)0.001 (3)0.012 (4)
C90.041 (3)0.054 (4)0.054 (4)0.008 (3)0.004 (3)0.017 (3)
C100.039 (3)0.046 (4)0.032 (3)0.003 (2)0.007 (2)0.018 (3)
C110.045 (3)0.049 (4)0.038 (3)0.010 (3)0.010 (3)0.021 (3)
C120.068 (4)0.060 (5)0.058 (4)0.020 (3)0.018 (3)0.034 (4)
C130.098 (6)0.049 (5)0.058 (5)0.017 (4)0.027 (4)0.022 (4)
C140.085 (5)0.061 (5)0.048 (4)0.008 (4)0.008 (4)0.013 (4)
C150.053 (3)0.058 (5)0.032 (3)0.007 (3)0.005 (3)0.013 (3)
C160.047 (4)0.084 (6)0.039 (4)0.012 (3)0.003 (3)0.015 (4)
C170.041 (3)0.088 (6)0.046 (4)0.007 (3)0.004 (3)0.022 (4)
C180.041 (3)0.056 (4)0.036 (3)0.009 (3)0.003 (2)0.015 (3)
C190.035 (3)0.043 (4)0.043 (3)0.012 (2)0.003 (2)0.016 (3)
C200.043 (3)0.041 (4)0.041 (4)0.014 (2)0.001 (3)0.013 (3)
C210.049 (3)0.058 (4)0.047 (4)0.007 (3)0.013 (3)0.010 (3)
C220.098 (6)0.056 (5)0.039 (4)0.032 (4)0.011 (4)0.013 (4)
C230.090 (5)0.060 (5)0.044 (4)0.032 (4)0.015 (4)0.024 (4)
C240.057 (4)0.048 (4)0.044 (4)0.022 (3)0.013 (3)0.022 (3)
C250.063 (4)0.080 (6)0.068 (5)0.022 (4)0.025 (4)0.048 (5)
C260.045 (3)0.081 (6)0.076 (5)0.009 (3)0.018 (3)0.043 (5)
C270.030 (3)0.062 (4)0.060 (4)0.003 (3)0.001 (3)0.028 (4)
Geometric parameters (Å, º) top
In1—O32.101 (4)C6—C71.416 (10)
In1—O22.110 (4)C7—C81.322 (10)
In1—O12.112 (4)C8—C91.406 (9)
In1—N32.250 (5)C10—C151.409 (8)
In1—N12.264 (5)C10—C111.443 (7)
In1—N22.269 (4)C11—C121.392 (9)
O1—C21.298 (8)C12—C131.401 (10)
O2—C111.325 (7)C13—C141.373 (10)
O3—C201.317 (7)C14—C151.408 (10)
N1—C91.316 (7)C15—C161.412 (9)
N1—C11.365 (8)C16—C171.351 (10)
N2—C181.314 (7)C17—C181.389 (9)
N2—C101.355 (8)C19—C241.420 (8)
N3—C271.328 (7)C19—C201.442 (8)
N3—C191.356 (7)C20—C211.385 (8)
C1—C61.407 (9)C21—C221.409 (10)
C1—C21.451 (8)C22—C231.356 (10)
C2—C31.386 (9)C23—C241.408 (9)
C3—C41.389 (10)C24—C251.404 (9)
C4—C51.356 (11)C25—C261.352 (11)
C5—C61.401 (10)C26—C271.392 (9)
O3—In1—O296.96 (17)C1—C6—C5118.7 (7)
O3—In1—O1101.69 (17)C1—C6—C7116.7 (7)
O2—In1—O198.33 (17)C5—C6—C7124.6 (7)
O3—In1—N376.88 (16)C8—C7—C6121.5 (7)
O2—In1—N393.12 (18)C7—C8—C9118.8 (7)
O1—In1—N3168.54 (17)N1—C9—C8122.4 (7)
O3—In1—N198.64 (17)N2—C10—C15122.2 (5)
O2—In1—N1164.31 (16)N2—C10—C11117.1 (5)
O1—In1—N176.89 (17)C15—C10—C11120.7 (6)
N3—In1—N192.01 (17)O2—C11—C12122.5 (6)
O3—In1—N2163.81 (17)O2—C11—C10120.1 (5)
O2—In1—N276.89 (16)C12—C11—C10117.4 (6)
O1—In1—N294.06 (17)C11—C12—C13120.6 (7)
N3—In1—N288.41 (17)C14—C13—C12122.7 (7)
N1—In1—N288.45 (17)C13—C14—C15118.6 (7)
C2—O1—In1115.4 (3)C10—C15—C14120.0 (6)
C11—O2—In1115.2 (3)C10—C15—C16116.3 (6)
C20—O3—In1115.2 (3)C14—C15—C16123.7 (6)
C9—N1—C1119.5 (5)C17—C16—C15120.6 (6)
C9—N1—In1130.5 (4)C16—C17—C18119.0 (6)
C1—N1—In1109.8 (3)N2—C18—C17122.9 (6)
C18—N2—C10119.0 (5)N3—C19—C24121.6 (5)
C18—N2—In1130.4 (4)N3—C19—C20116.3 (5)
C10—N2—In1110.5 (3)C24—C19—C20122.1 (5)
C27—N3—C19119.6 (5)O3—C20—C21123.6 (5)
C27—N3—In1129.2 (4)O3—C20—C19120.3 (5)
C19—N3—In1111.0 (3)C21—C20—C19116.1 (6)
N1—C1—C6121.1 (6)C20—C21—C22120.9 (6)
N1—C1—C2116.9 (5)C23—C22—C21123.2 (6)
C6—C1—C2122.0 (6)C22—C23—C24118.8 (7)
O1—C2—C3124.6 (6)C23—C24—C25124.2 (6)
O1—C2—C1120.3 (5)C23—C24—C19118.8 (6)
C3—C2—C1115.1 (6)C25—C24—C19117.0 (6)
C4—C3—C2122.5 (7)C26—C25—C24119.8 (6)
C5—C4—C3121.9 (7)C25—C26—C27120.5 (6)
C4—C5—C6119.8 (7)N3—C27—C26121.4 (6)
O3—In1—O1—C2103.6 (4)C2—C1—C6—C7178.5 (5)
O2—In1—O1—C2157.5 (4)C4—C5—C6—C11.5 (10)
N3—In1—O1—C222.0 (10)C4—C5—C6—C7178.1 (7)
N1—In1—O1—C27.3 (4)C1—C6—C7—C81.1 (9)
N2—In1—O1—C280.1 (4)C5—C6—C7—C8179.2 (7)
O3—In1—O2—C11160.7 (4)C6—C7—C8—C90.8 (10)
O1—In1—O2—C1196.4 (4)C1—N1—C9—C80.4 (9)
N3—In1—O2—C1183.5 (4)In1—N1—C9—C8174.9 (4)
N1—In1—O2—C1125.4 (8)C7—C8—C9—N11.7 (10)
N2—In1—O2—C114.1 (4)C18—N2—C10—C150.3 (8)
O2—In1—O3—C2086.5 (4)In1—N2—C10—C15177.2 (4)
O1—In1—O3—C20173.5 (4)C18—N2—C10—C11179.4 (5)
N3—In1—O3—C205.1 (4)In1—N2—C10—C113.1 (6)
N1—In1—O3—C2095.2 (4)In1—O2—C11—C12176.4 (5)
N2—In1—O3—C2020.0 (8)In1—O2—C11—C104.0 (7)
O3—In1—N1—C978.4 (5)N2—C10—C11—O20.3 (8)
O2—In1—N1—C9107.7 (7)C15—C10—C11—O2179.4 (5)
O1—In1—N1—C9178.5 (5)N2—C10—C11—C12180.0 (5)
N3—In1—N1—C91.4 (5)C15—C10—C11—C120.3 (8)
N2—In1—N1—C987.0 (5)O2—C11—C12—C13179.8 (6)
O3—In1—N1—C1106.6 (4)C10—C11—C12—C130.2 (9)
O2—In1—N1—C167.3 (7)C11—C12—C13—C140.1 (11)
O1—In1—N1—C16.5 (3)C12—C13—C14—C150.8 (11)
N3—In1—N1—C1176.3 (4)N2—C10—C15—C14179.3 (6)
N2—In1—N1—C188.0 (4)C11—C10—C15—C141.0 (9)
O3—In1—N2—C18111.8 (7)N2—C10—C15—C160.5 (8)
O2—In1—N2—C18179.1 (5)C11—C10—C15—C16179.2 (5)
O1—In1—N2—C1881.5 (5)C13—C14—C15—C101.2 (10)
N3—In1—N2—C1887.3 (5)C13—C14—C15—C16179.0 (6)
N1—In1—N2—C184.7 (5)C10—C15—C16—C170.1 (9)
O3—In1—N2—C1065.3 (7)C14—C15—C16—C17179.9 (7)
O2—In1—N2—C103.8 (4)C15—C16—C17—C180.8 (10)
O1—In1—N2—C10101.4 (4)C10—N2—C18—C170.5 (9)
N3—In1—N2—C1089.8 (4)In1—N2—C18—C17177.4 (5)
N1—In1—N2—C10178.2 (4)C16—C17—C18—N21.0 (10)
O3—In1—N3—C27179.9 (5)C27—N3—C19—C241.2 (9)
O2—In1—N3—C2783.7 (5)In1—N3—C19—C24174.3 (4)
O1—In1—N3—C2795.8 (9)C27—N3—C19—C20180.0 (5)
N1—In1—N3—C2781.5 (5)In1—N3—C19—C204.5 (6)
N2—In1—N3—C276.9 (5)In1—O3—C20—C21175.8 (5)
O3—In1—N3—C195.1 (4)In1—O3—C20—C194.6 (7)
O2—In1—N3—C1991.3 (4)N3—C19—C20—O30.3 (8)
O1—In1—N3—C1989.2 (8)C24—C19—C20—O3178.6 (5)
N1—In1—N3—C19103.5 (4)N3—C19—C20—C21179.4 (5)
N2—In1—N3—C19168.1 (4)C24—C19—C20—C211.7 (8)
C9—N1—C1—C61.7 (8)O3—C20—C21—C22178.5 (6)
In1—N1—C1—C6173.9 (4)C19—C20—C21—C221.8 (9)
C9—N1—C1—C2179.2 (5)C20—C21—C22—C230.9 (11)
In1—N1—C1—C25.2 (6)C21—C22—C23—C240.3 (10)
In1—O1—C2—C3172.9 (5)C22—C23—C24—C25179.6 (6)
In1—O1—C2—C17.2 (7)C22—C23—C24—C190.4 (9)
N1—C1—C2—O10.9 (8)N3—C19—C24—C23179.4 (6)
C6—C1—C2—O1180.0 (5)C20—C19—C24—C230.6 (9)
N1—C1—C2—C3179.2 (5)N3—C19—C24—C250.6 (9)
C6—C1—C2—C30.1 (8)C20—C19—C24—C25179.4 (6)
O1—C2—C3—C4179.0 (6)C23—C24—C25—C26179.8 (7)
C1—C2—C3—C41.1 (9)C19—C24—C25—C260.2 (10)
C2—C3—C4—C50.8 (11)C24—C25—C26—C270.5 (11)
C3—C4—C5—C60.6 (11)C19—N3—C27—C261.4 (9)
N1—C1—C6—C5177.9 (5)In1—N3—C27—C26173.2 (5)
C2—C1—C6—C51.2 (9)C25—C26—C27—N31.0 (11)
N1—C1—C6—C72.4 (8)

Experimental details

Crystal data
Chemical formula[In(C9H6NO)3]
Mr547.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.1860 (12), 13.436 (3), 14.725 (3)
α, β, γ (°)65.63 (3), 88.15 (3), 83.55 (3)
V3)1107.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.6 × 0.07 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.517, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
11360, 4647, 2896
Rint0.112
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.150, 0.74
No. of reflections4647
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 1.05

Computer programs: COLLECT (Nonius, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001) and Materials Studio (Accelrys, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
In1—O32.101 (4)In1—N32.250 (5)
In1—O22.110 (4)In1—N12.264 (5)
In1—O12.112 (4)In1—N22.269 (4)
O3—In1—O296.96 (17)O1—In1—N176.89 (17)
O3—In1—O1101.69 (17)N3—In1—N192.01 (17)
O2—In1—O198.33 (17)O3—In1—N2163.81 (17)
O3—In1—N376.88 (16)O2—In1—N276.89 (16)
O2—In1—N393.12 (18)O1—In1—N294.06 (17)
O1—In1—N3168.54 (17)N3—In1—N288.41 (17)
O3—In1—N198.64 (17)N1—In1—N288.45 (17)
O2—In1—N1164.31 (16)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds