Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, (AETO)4[Pb3I10] or (C15H14NO2S)4[Pb3I10], contains chains of octahedrally coord­inated PbI6 species along with two crystallographically independent AETO cations that hydrogen bond to these chains. Individual (Pb3I10)n4n- chains are linked into layers via hydrogen bonds. The cations sheath each layer of chains, forming cation-chain-cation triple layers. Cations on adjacent triple layers interdigitate, forming stacks running parallel to [110]. There is a range of hydrogen bonding interactions between each cation and the (Pb3I10)n4n- chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007414/ac6035sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007414/ac6035Isup2.hkl
Contains datablock I

CCDC reference: 214790

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.035
  • wR factor = 0.092
  • Data-to-parameter ratio = 16.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
THETM_01 Alert C The value of sine(theta_max)/wavelength is less than 0.590 Calculated sin(theta_max)/wavelength = 0.5882 PLAT_420 Alert C D-H Without Acceptor N(2) - H(2D) ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The title structure, (I), consists of (Pb3I10)n4n- chains running parallel to (010) and stacks of the AETO cations running parallel to (110). The chains, illustrated in Fig. 1, can be viewed as centrosymmetric trimers of face-sharing octahedra joined together into chains via edge-sharing between terminal octahedra on adjacent trimers. The extended inorganic anion may thus be viewed as a mixed face-shared/edge-shared chain, with a repeat pattern (f2e)n, where f denotes the face-sharing of adjacent octahedra and e denotes edge-sharing. Similar chains are observed in several other lead(II) and tin(II) halide salts, both as (f2e)n (Krautscheid & Vielsack, 1997; Corradi et al., 1999; Corradi et al., 2001; Gröger et al., 2002; Lode & Krautscheid, 2001) and (fe)n chains (Krautscheid et al., 2001). A longer face-sharing sequence is found in (C6H9N2)Ni5Cl14(CH3CN)2 (Bond & Willett, 1993), where an (f4e)n repeat pattern is observed. These structures represent a variation of the parent hexagonal CsNiCl3 structure type that contains chains of face-shared octahedra (Gmelin, 1966). The replacement of selected face-sharing linkages by edge-sharing units is one structural motif whereby a halide ion (or other ligand) can be incorporated into that parent structure.

The coordination of the central lead(II) ion (Pb1) within the trimeric unit is relatively symmetrical [Pb—I distances of 3.1683 (9), 3.2479 (14) and 3.2649 (11) Å, and bond angles ranging from 83.57 (2) to 94.05 (3)°]. The terminal lead(II) (Pb2) ions are much more distorted, with Pb—I distances ranging from 3.0700 (14) to 3.4471 (7) Å and angles from 77.22 (2) to 101.32 (2)°. This distortion is likely due to the asymmetric nature of the environment of the iodide ions coordinated to Pb2. Average values for octahedrally coordinated PbIII6 species from the Cambridge Structural Database (Version 5.24; Allen, 2002), are Pb—I ca 3.10–3.34 Å and angles in the range 77.69–97.25°.

The compound contains two crystallographicly independent cations (labeled cat1 for the cation containing N1 and cat2 for the cation containing N2). Fig. 2 illustrates cat2. In both cations, the ethoxyammonium arm has a gauche configuration. The cations forms stacks parallel to the (110) direction, as shown in Fig. 3. The sequence in these stacks is (cat1, cat1, cat2, cat2, ···). The (cat1, cat1) and (cat2, cat2) pairs are related by centers of inversion, so within each pair the keto CO groups lie on opposite sides of the stacks. In contrast, for the (cat1, cat2) pairs, the keto CO groups lie on the same sides of the stacks.

Hydrogen bonding from the ammonium ion on cat1 forms N—H···I bonds bridging pairs of chains. This ties the chains of (Pb3I10)n4n- ions together into sheets parallel to (110), as seen in Fig. 3. In contrast, the N—H···I hydrogen bonds from cat2 involve iodide ions on a single chain. This hydrogen-bonding geometry is presented in Table 1. N1—H1C forms a bifurcated hydrogen bond between I2ii and I5ii. There is also an intramolecular hydrogen bond between N1 and O1. The other cation forms hydrogen bonds to the same chain with a bifurcated hydrogen bond N2—H2D to both I2 and I4. In addition, there is both inter- and intramolecular hydrogen bonding between N2 and O2/O3.

Experimental top

Under ambient conditions, stoichiometric amounts of (AETO)I (6.72 × 10−5 mol) and PbI2 (5.04 × 10−5 mol) were sealed in a large test tube. Under flowing N2 gas, 5 ml of concentrated hydroiodic acid and 5 ml of 2-propanol were added. The reaction was sealed and heated to 343 K, resulting in a yellow solution. The solution was cooled to 263 K over 24 h. Yellow needle-like crystals were collected and one was selected for structural investigation.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with Uiso values constrained to be 1.2Ueq of the carrier atom. There is a large residual of 1.93 e Å−3 ca 0.96 Å from I5.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: XS in SHELXTL (Sheldrick, 1998); program(s) used to refine structure: XL in SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

Figures top
[Figure 1] Fig. 1. (a) Illustration of the (Pb3I10)n4n- chain. Displacement ellipsoids shown at 50% probability. (b) Polyhedral representation of the chain.
[Figure 2] Fig. 2. Illustration of cation 2.
[Figure 3] Fig. 3. Packing diagram, illustrating the stacking of the cations parallel to (110). H atoms have been omitted for clarity.
Tetrakis[(9-oxo-10-thiaxanthen-2-yloxyethyl)ammonium] decaiodidotriplumbate(II) top
Crystal data top
(C15H14NO2S)4[Pb3I10]Z = 1
Mr = 2979.90F(000) = 1348
Triclinic, P1Dx = 2.543 Mg m3
a = 9.793 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.704 (2) ÅCell parameters from 8192 reflections
c = 18.061 (4) Åθ = 1.9–24.7°
α = 71.72 (3)°µ = 10.60 mm1
β = 89.45 (3)°T = 293 K
γ = 82.09 (3)°Needle, yellow
V = 1945.7 (8) Å30.16 × 0.10 × 0.08 mm
Data collection top
SMART 1000
diffractometer
6618 independent reflections
Radiation source: normal-focus sealed tube5205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 8.3 pixels mm-1θmax = 24.7°, θmin = 1.9°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1313
Tmin = 0.249, Tmax = 0.428l = 2121
18436 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
6618 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 1.93 e Å3
228 restraintsΔρmin = 1.73 e Å3
Crystal data top
(C15H14NO2S)4[Pb3I10]γ = 82.09 (3)°
Mr = 2979.90V = 1945.7 (8) Å3
Triclinic, P1Z = 1
a = 9.793 (2) ÅMo Kα radiation
b = 11.704 (2) ŵ = 10.60 mm1
c = 18.061 (4) ÅT = 293 K
α = 71.72 (3)°0.16 × 0.10 × 0.08 mm
β = 89.45 (3)°
Data collection top
SMART 1000
diffractometer
6618 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
5205 reflections with I > 2σ(I)
Tmin = 0.249, Tmax = 0.428Rint = 0.084
18436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035228 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.97Δρmax = 1.93 e Å3
6618 reflectionsΔρmin = 1.73 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.00000.50000.00000.04785 (12)
Pb20.11247 (3)0.87148 (2)0.036604 (17)0.04846 (10)
I10.16212 (5)0.66942 (5)0.06260 (3)0.05194 (14)
I20.26605 (5)0.62643 (5)0.07053 (3)0.05325 (15)
I30.12019 (6)0.97463 (4)0.11289 (3)0.05237 (14)
I40.07412 (6)0.27621 (5)0.16057 (3)0.05907 (16)
I50.36409 (7)1.04956 (6)0.12162 (4)0.0804 (2)
S10.7585 (3)0.01220 (19)0.54453 (12)0.0612 (6)
N10.5658 (7)0.1995 (6)0.0524 (4)0.0614 (18)
H1A0.62430.13840.08320.092*
H1B0.59660.22070.00420.092*
H1C0.48320.17600.05210.092*
O10.5916 (6)0.1811 (5)0.2119 (3)0.0572 (14)
O20.9460 (7)0.2980 (6)0.3677 (3)0.0719 (17)
C10.5546 (9)0.3058 (7)0.0825 (5)0.057 (2)
H1E0.45960.32670.09480.069*
H1D0.58140.37550.04250.069*
C20.6461 (9)0.2761 (7)0.1544 (4)0.054 (2)
H2A0.74050.24940.14410.065*
H2B0.64450.34670.17180.065*
C30.6408 (8)0.1514 (7)0.2880 (4)0.0470 (18)
C40.5739 (9)0.0633 (7)0.3404 (5)0.0541 (19)
H4A0.50250.03230.32300.065*
C50.6140 (9)0.0233 (7)0.4172 (5)0.055 (2)
H5A0.57080.03670.45180.067*
C60.7186 (8)0.0705 (6)0.4451 (4)0.0487 (18)
C70.7847 (8)0.1609 (6)0.3925 (4)0.0463 (18)
C80.7418 (8)0.1984 (6)0.3133 (4)0.0457 (17)
H8A0.78460.25740.27750.055*
C90.8940 (9)0.2178 (7)0.4157 (5)0.0513 (19)
C100.9459 (8)0.1763 (7)0.4982 (5)0.053 (2)
C110.8933 (8)0.0875 (8)0.5577 (5)0.056 (2)
C121.0541 (9)0.2314 (9)0.5170 (5)0.063 (2)
H12A1.08830.29290.47840.076*
C131.1098 (10)0.1953 (10)0.5918 (6)0.078 (3)
H13A1.18230.23120.60350.094*
C141.0571 (12)0.1055 (11)0.6494 (6)0.082 (3)
H14A1.09510.08110.69990.099*
C150.9502 (11)0.0518 (9)0.6337 (5)0.070 (3)
H15A0.91550.00810.67330.083*
S20.5594 (2)0.71198 (18)0.52361 (13)0.0567 (5)
N20.0421 (10)0.5220 (7)0.2557 (5)0.093 (3)
H2C0.04310.48840.27400.140*
H2D0.05650.51070.21010.140*
H2E0.10280.48760.28950.140*
O30.1156 (7)0.6054 (6)0.3471 (4)0.0743 (18)
O40.2705 (7)0.4457 (6)0.6220 (4)0.0779 (19)
C160.0579 (11)0.6477 (8)0.2456 (5)0.070 (3)
H16A0.13130.66970.27720.084*
H16B0.07930.69470.19140.084*
C170.0875 (12)0.6711 (9)0.2733 (6)0.083 (3)
H17A0.15940.64920.24090.100*
H17B0.08450.75660.26750.100*
C180.2217 (8)0.6325 (7)0.3861 (5)0.0507 (19)
C190.2368 (8)0.5704 (7)0.4650 (5)0.053 (2)
H19A0.17780.51450.48820.064*
C200.3396 (7)0.5909 (6)0.5103 (4)0.0455 (17)
C210.4282 (8)0.6756 (6)0.4750 (4)0.0474 (18)
C220.4134 (9)0.7360 (7)0.3946 (5)0.059 (2)
H22A0.47350.79050.37080.070*
C230.3109 (9)0.7159 (7)0.3501 (5)0.057 (2)
H23A0.30110.75730.29690.069*
C240.3481 (9)0.5218 (7)0.5936 (5)0.0517 (19)
C250.4530 (8)0.5411 (7)0.6454 (5)0.0517 (19)
C260.5477 (8)0.6258 (7)0.6195 (5)0.0495 (19)
C270.6390 (9)0.6425 (8)0.6738 (5)0.059 (2)
H27A0.69950.69950.65760.071*
C280.6381 (10)0.5737 (9)0.7513 (6)0.070 (2)
H28A0.69800.58500.78720.084*
C290.5511 (9)0.4898 (9)0.7759 (5)0.070 (3)
H29A0.55330.44310.82820.084*
C300.4597 (8)0.4728 (8)0.7245 (5)0.061 (2)
H30A0.40100.41470.74260.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0542 (3)0.0432 (2)0.0467 (2)0.01079 (18)0.00005 (19)0.01338 (18)
Pb20.05522 (19)0.04371 (17)0.04744 (18)0.01225 (13)0.00110 (13)0.01349 (13)
I10.0546 (3)0.0553 (3)0.0465 (3)0.0184 (2)0.0043 (2)0.0122 (2)
I20.0460 (3)0.0642 (3)0.0470 (3)0.0115 (2)0.0003 (2)0.0124 (2)
I30.0679 (3)0.0430 (3)0.0458 (3)0.0114 (2)0.0056 (2)0.0120 (2)
I40.0820 (4)0.0560 (3)0.0435 (3)0.0194 (3)0.0009 (3)0.0176 (2)
I50.0706 (4)0.0631 (4)0.0936 (5)0.0114 (3)0.0195 (4)0.0033 (3)
S10.0790 (16)0.0519 (12)0.0448 (12)0.0005 (11)0.0096 (10)0.0080 (9)
N10.059 (4)0.059 (4)0.057 (4)0.015 (3)0.010 (3)0.003 (3)
O10.060 (3)0.061 (3)0.049 (3)0.024 (3)0.004 (3)0.010 (3)
O20.086 (5)0.071 (4)0.061 (4)0.036 (3)0.001 (3)0.013 (3)
C10.058 (5)0.053 (5)0.055 (5)0.002 (4)0.007 (4)0.013 (4)
C20.060 (5)0.055 (5)0.044 (4)0.017 (4)0.002 (4)0.006 (4)
C30.049 (4)0.049 (4)0.043 (4)0.005 (3)0.001 (3)0.015 (3)
C40.061 (5)0.049 (4)0.057 (5)0.023 (4)0.012 (4)0.017 (4)
C50.060 (5)0.043 (4)0.062 (5)0.014 (4)0.023 (4)0.013 (4)
C60.057 (5)0.038 (4)0.048 (4)0.000 (3)0.011 (4)0.011 (3)
C70.052 (4)0.037 (4)0.047 (4)0.002 (3)0.005 (3)0.011 (3)
C80.055 (5)0.039 (4)0.043 (4)0.014 (3)0.009 (3)0.011 (3)
C90.058 (5)0.044 (4)0.055 (5)0.000 (4)0.002 (4)0.023 (4)
C100.054 (5)0.063 (5)0.045 (4)0.006 (4)0.000 (4)0.026 (4)
C110.053 (5)0.064 (5)0.050 (5)0.021 (4)0.003 (4)0.028 (4)
C120.057 (5)0.078 (6)0.065 (5)0.002 (4)0.003 (4)0.042 (5)
C130.066 (6)0.110 (8)0.069 (6)0.015 (6)0.005 (5)0.054 (6)
C140.082 (7)0.109 (8)0.061 (6)0.032 (6)0.016 (5)0.053 (6)
C150.083 (7)0.070 (6)0.048 (5)0.014 (5)0.002 (5)0.018 (4)
S20.0539 (12)0.0461 (11)0.0674 (13)0.0127 (9)0.0007 (10)0.0117 (10)
N20.118 (8)0.061 (5)0.085 (6)0.010 (5)0.001 (5)0.001 (4)
O30.080 (4)0.076 (4)0.062 (4)0.009 (3)0.015 (3)0.023 (3)
O40.076 (4)0.092 (5)0.063 (4)0.040 (4)0.003 (3)0.008 (3)
C160.110 (8)0.054 (5)0.045 (5)0.013 (5)0.011 (5)0.014 (4)
C170.117 (9)0.065 (6)0.079 (7)0.025 (6)0.025 (6)0.035 (5)
C180.045 (4)0.052 (4)0.061 (5)0.001 (3)0.001 (4)0.029 (4)
C190.048 (5)0.046 (4)0.063 (5)0.005 (3)0.003 (4)0.015 (4)
C200.039 (4)0.043 (4)0.053 (4)0.001 (3)0.005 (3)0.015 (3)
C210.047 (4)0.041 (4)0.054 (5)0.001 (3)0.007 (4)0.016 (4)
C220.059 (5)0.051 (5)0.064 (5)0.004 (4)0.007 (4)0.016 (4)
C230.063 (5)0.051 (5)0.058 (5)0.000 (4)0.003 (4)0.021 (4)
C240.057 (5)0.047 (4)0.053 (5)0.010 (4)0.008 (4)0.018 (4)
C250.039 (4)0.050 (4)0.066 (5)0.002 (3)0.005 (4)0.021 (4)
C260.041 (4)0.043 (4)0.063 (5)0.004 (3)0.003 (4)0.018 (4)
C270.050 (5)0.059 (5)0.072 (6)0.004 (4)0.005 (4)0.026 (4)
C280.058 (6)0.086 (6)0.070 (6)0.006 (5)0.009 (5)0.037 (5)
C290.053 (5)0.090 (7)0.058 (5)0.001 (5)0.005 (4)0.014 (5)
C300.046 (5)0.080 (6)0.052 (5)0.007 (4)0.009 (4)0.017 (4)
Geometric parameters (Å, º) top
Pb1—I1i3.1683 (9)C12—H12A0.9300
Pb1—I13.1683 (9)C13—C141.380 (15)
Pb1—I43.2479 (14)C13—H13A0.9300
Pb1—I4i3.2479 (14)C14—C151.368 (15)
Pb1—I2i3.2649 (11)C14—H14A0.9300
Pb1—I23.2649 (11)C15—H15A0.9300
Pb2—I53.0700 (14)S2—C261.721 (8)
Pb2—I3ii3.1379 (12)S2—C211.735 (8)
Pb2—I4i3.2211 (10)N2—C161.411 (11)
Pb2—I33.2818 (9)N2—H2C0.8900
Pb2—I13.4231 (15)N2—H2D0.8900
Pb2—I23.4471 (7)N2—H2E0.8900
S1—C61.736 (8)O3—C171.323 (11)
S1—C111.741 (10)O3—C181.386 (10)
N1—C11.497 (10)O4—C241.235 (10)
N1—H1A0.8900C16—C171.600 (14)
N1—H1B0.8900C16—H16A0.9700
N1—H1C0.8900C16—H16B0.9700
O1—C31.382 (8)C17—H17A0.9700
O1—C21.423 (9)C17—H17B0.9700
O2—C91.226 (9)C18—C191.380 (11)
C1—C21.506 (10)C18—C231.402 (12)
C1—H1E0.9700C19—C201.394 (11)
C1—H1D0.9700C19—H19A0.9300
C2—H2A0.9700C20—C211.405 (10)
C2—H2B0.9700C20—C241.466 (11)
C3—C81.344 (10)C21—C221.400 (11)
C3—C41.396 (10)C22—C231.381 (12)
C4—C51.359 (11)C22—H22A0.9300
C4—H4A0.9300C23—H23A0.9300
C5—C61.396 (11)C24—C251.482 (11)
C5—H5A0.9300C25—C301.398 (11)
C6—C71.409 (10)C25—C261.420 (11)
C7—C81.408 (10)C26—C271.409 (11)
C7—C91.464 (11)C27—C281.379 (12)
C8—H8A0.9300C27—H27A0.9300
C9—C101.486 (10)C28—C291.355 (13)
C10—C111.391 (12)C28—H28A0.9300
C10—C121.409 (12)C29—C301.372 (12)
C11—C151.400 (11)C29—H29A0.9300
C12—C131.376 (12)C30—H30A0.9300
I1i—Pb1—I1180.000 (16)C12—C10—C9117.7 (8)
I1i—Pb1—I488.84 (3)C10—C11—C15120.2 (9)
I1—Pb1—I491.16 (3)C10—C11—S1124.2 (6)
I1i—Pb1—I4i91.16 (3)C15—C11—S1115.5 (8)
I1—Pb1—I4i88.84 (3)C13—C12—C10120.9 (10)
I4—Pb1—I4i180.000 (15)C13—C12—H12A119.6
I1i—Pb1—I2i83.57 (2)C10—C12—H12A119.6
I1—Pb1—I2i96.43 (2)C12—C13—C14119.5 (11)
I4—Pb1—I2i85.95 (3)C12—C13—H13A120.3
I4i—Pb1—I2i94.05 (3)C14—C13—H13A120.3
I1i—Pb1—I296.43 (2)C15—C14—C13121.3 (9)
I1—Pb1—I283.57 (2)C15—C14—H14A119.4
I4—Pb1—I294.05 (3)C13—C14—H14A119.4
I4i—Pb1—I285.95 (3)C14—C15—C11119.7 (10)
I2i—Pb1—I2180.0C14—C15—H15A120.2
I5—Pb2—I3ii98.79 (3)C11—C15—H15A120.2
I5—Pb2—I4i95.69 (3)C26—S2—C21104.3 (4)
I3ii—Pb2—I4i91.09 (3)C16—N2—H2C109.5
I5—Pb2—I394.29 (3)C16—N2—H2D109.5
I3ii—Pb2—I391.64 (3)H2C—N2—H2D109.5
I4i—Pb2—I3169.130 (17)C16—N2—H2E109.5
I3ii—Pb2—I182.71 (3)H2C—N2—H2E109.5
I4i—Pb2—I184.99 (3)H2D—N2—H2E109.5
I3—Pb2—I184.92 (3)C17—O3—C18118.1 (8)
I5—Pb2—I2101.320 (19)N2—C16—C17105.0 (8)
I3ii—Pb2—I2159.574 (17)N2—C16—H16A110.7
I4i—Pb2—I283.429 (16)C17—C16—H16A110.7
I3—Pb2—I290.400 (16)N2—C16—H16B110.7
I1—Pb2—I277.219 (15)C17—C16—H16B110.7
Pb1—I1—Pb278.54 (2)H16A—C16—H16B108.8
Pb1—I2—Pb276.91 (2)O3—C17—C16109.9 (8)
Pb2ii—I3—Pb288.36 (3)O3—C17—H17A109.7
Pb2i—I4—Pb180.43 (2)C16—C17—H17A109.7
C6—S1—C11104.0 (4)O3—C17—H17B109.7
C1—N1—H1A109.5C16—C17—H17B109.7
C1—N1—H1B109.5H17A—C17—H17B108.2
H1A—N1—H1B109.5C19—C18—O3115.6 (8)
C1—N1—H1C109.5C19—C18—C23120.4 (8)
H1A—N1—H1C109.5O3—C18—C23124.0 (8)
H1B—N1—H1C109.5C18—C19—C20120.6 (8)
C3—O1—C2117.6 (6)C18—C19—H19A119.7
N1—C1—C2110.4 (6)C20—C19—H19A119.7
N1—C1—H1E109.6C19—C20—C21119.5 (7)
C2—C1—H1E109.6C19—C20—C24117.2 (7)
N1—C1—H1D109.6C21—C20—C24123.4 (7)
C2—C1—H1D109.6C22—C21—C20119.3 (7)
H1E—C1—H1D108.1C22—C21—S2115.9 (6)
O1—C2—C1105.7 (7)C20—C21—S2124.8 (6)
O1—C2—H2A110.6C23—C22—C21121.0 (8)
C1—C2—H2A110.6C23—C22—H22A119.5
O1—C2—H2B110.6C21—C22—H22A119.5
C1—C2—H2B110.6C22—C23—C18119.3 (8)
H2A—C2—H2B108.7C22—C23—H23A120.4
C8—C3—O1126.6 (7)C18—C23—H23A120.4
C8—C3—C4120.4 (7)O4—C24—C20121.3 (8)
O1—C3—C4113.1 (7)O4—C24—C25118.7 (7)
C5—C4—C3119.4 (8)C20—C24—C25120.0 (7)
C5—C4—H4A120.3C30—C25—C26117.6 (8)
C3—C4—H4A120.3C30—C25—C24118.7 (7)
C4—C5—C6121.4 (7)C26—C25—C24123.8 (7)
C4—C5—H5A119.3C27—C26—C25119.7 (8)
C6—C5—H5A119.3C27—C26—S2116.5 (6)
C5—C6—C7119.3 (7)C25—C26—S2123.8 (6)
C5—C6—S1116.6 (6)C28—C27—C26119.6 (9)
C7—C6—S1124.1 (6)C28—C27—H27A120.2
C8—C7—C6117.6 (7)C26—C27—H27A120.2
C8—C7—C9118.6 (7)C29—C28—C27120.9 (9)
C6—C7—C9123.8 (7)C29—C28—H28A119.5
C3—C8—C7121.9 (7)C27—C28—H28A119.5
C3—C8—H8A119.0C28—C29—C30120.8 (9)
C7—C8—H8A119.0C28—C29—H29A119.6
O2—C9—C7121.1 (7)C30—C29—H29A119.6
O2—C9—C10119.0 (8)C29—C30—C25121.4 (9)
C7—C9—C10119.9 (8)C29—C30—H30A119.3
C11—C10—C12118.4 (8)C25—C30—H30A119.3
C11—C10—C9123.9 (8)
I4—Pb1—I1—Pb2142.52 (2)C11—C10—C12—C132.3 (12)
I4i—Pb1—I1—Pb237.48 (3)C9—C10—C12—C13178.3 (8)
I2i—Pb1—I1—Pb2131.43 (2)C10—C12—C13—C141.2 (13)
I2—Pb1—I1—Pb248.57 (2)C12—C13—C14—C150.2 (14)
I3ii—Pb2—I1—Pb1129.76 (2)C13—C14—C15—C110.5 (14)
I4i—Pb2—I1—Pb138.01 (2)C10—C11—C15—C140.6 (12)
I3—Pb2—I1—Pb1137.93 (2)S1—C11—C15—C14179.6 (7)
I5—Pb2—I3—Pb2ii98.94 (3)C18—O3—C17—C16166.5 (7)
I3ii—Pb2—I3—Pb2ii0.0N2—C16—C17—O359.8 (10)
I4i—Pb2—I3—Pb2ii104.51 (9)C17—O3—C18—C19173.2 (8)
I1—Pb2—I3—Pb2ii82.53 (3)C17—O3—C18—C237.2 (11)
I1i—Pb1—I4—Pb2i39.994 (19)O3—C18—C19—C20179.6 (7)
I1—Pb1—I4—Pb2i140.006 (19)C23—C18—C19—C200.8 (11)
I2i—Pb1—I4—Pb2i43.64 (2)C18—C19—C20—C210.1 (11)
I2—Pb1—I4—Pb2i136.36 (2)C18—C19—C20—C24179.7 (7)
C3—O1—C2—C1168.5 (6)C19—C20—C21—C221.4 (10)
N1—C1—C2—O164.6 (8)C24—C20—C21—C22179.1 (7)
C2—O1—C3—C84.1 (11)C19—C20—C21—S2179.3 (6)
C2—O1—C3—C4175.8 (7)C24—C20—C21—S20.3 (10)
C8—C3—C4—C51.6 (12)C26—S2—C21—C22179.0 (6)
O1—C3—C4—C5178.5 (7)C26—S2—C21—C201.6 (7)
C3—C4—C5—C61.5 (12)C20—C21—C22—C231.8 (11)
C4—C5—C6—C70.4 (12)S2—C21—C22—C23178.8 (6)
C4—C5—C6—S1179.4 (6)C21—C22—C23—C180.9 (12)
C11—S1—C6—C5178.6 (6)C19—C18—C23—C220.4 (11)
C11—S1—C6—C71.6 (7)O3—C18—C23—C22180.0 (7)
C5—C6—C7—C80.6 (10)C19—C20—C24—O42.4 (11)
S1—C6—C7—C8179.5 (6)C21—C20—C24—O4178.0 (7)
C5—C6—C7—C9179.0 (7)C19—C20—C24—C25178.7 (7)
S1—C6—C7—C90.9 (10)C21—C20—C24—C250.9 (11)
O1—C3—C8—C7179.6 (7)O4—C24—C25—C300.3 (11)
C4—C3—C8—C70.5 (12)C20—C24—C25—C30179.3 (7)
C6—C7—C8—C30.6 (11)O4—C24—C25—C26180.0 (8)
C9—C7—C8—C3179.1 (7)C20—C24—C25—C261.0 (11)
C8—C7—C9—O21.2 (11)C30—C25—C26—C273.1 (11)
C6—C7—C9—O2178.5 (7)C24—C25—C26—C27176.6 (7)
C8—C7—C9—C10177.2 (6)C30—C25—C26—S2176.8 (6)
C6—C7—C9—C103.1 (11)C24—C25—C26—S23.5 (10)
O2—C9—C10—C11179.0 (7)C21—S2—C26—C27176.7 (6)
C7—C9—C10—C112.6 (11)C21—S2—C26—C253.4 (7)
O2—C9—C10—C120.4 (11)C25—C26—C27—C281.9 (11)
C7—C9—C10—C12178.0 (7)S2—C26—C27—C28178.0 (6)
C12—C10—C11—C152.0 (11)C26—C27—C28—C290.3 (13)
C9—C10—C11—C15178.7 (7)C27—C28—C29—C301.3 (14)
C12—C10—C11—S1179.1 (6)C28—C29—C30—C250.1 (14)
C9—C10—C11—S10.3 (11)C26—C25—C30—C292.2 (12)
C6—S1—C11—C102.1 (7)C24—C25—C30—C29177.5 (8)
C6—S1—C11—C15176.9 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···I1iii0.892.923.576 (7)132
N1—H1C···I2i0.893.213.653 (6)113
N1—H1A···I3iv0.892.883.689 (7)152
N1—H1C···I5i0.892.943.635 (7)136
N1—H1A···O10.892.532.831 (8)100
N2—H2D···I20.893.103.786 (9)136
N2—H2D···I40.893.243.832 (9)126
N2—H2E···O2v0.892.212.780 (10)121
N2—H2C···O30.892.362.745 (11)107
Symmetry codes: (i) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula(C15H14NO2S)4[Pb3I10]
Mr2979.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.793 (2), 11.704 (2), 18.061 (4)
α, β, γ (°)71.72 (3), 89.45 (3), 82.09 (3)
V3)1945.7 (8)
Z1
Radiation typeMo Kα
µ (mm1)10.60
Crystal size (mm)0.16 × 0.10 × 0.08
Data collection
DiffractometerSMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.249, 0.428
No. of measured, independent and
observed [I > 2σ(I)] reflections
18436, 6618, 5205
Rint0.084
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 0.97
No. of reflections6618
No. of parameters403
No. of restraints228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.93, 1.73

Computer programs: SMART (Bruker, 1998), SMART, SAINT-Plus (Bruker, 1999), XS in SHELXTL (Sheldrick, 1998), XL in SHELXTL, XP in SHELXTL, XCIF in SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···I1i0.892.923.576 (7)132
N1—H1C···I2ii0.893.213.653 (6)113
N1—H1A···I3iii0.892.883.689 (7)152
N1—H1C···I5ii0.892.943.635 (7)136
N1—H1A···O10.892.532.831 (8)100
N2—H2D···I20.893.103.786 (9)136
N2—H2D···I40.893.243.832 (9)126
N2—H2E···O2iv0.892.212.780 (10)121
N2—H2C···O30.892.362.745 (11)107
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y1, z; (iv) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds