Download citation
Download citation
link to html
The title complex, [(1R,2R)-(–)-1,2-(NSiMe3)2-C6H10]2Zr or [Zr(C12H28N2Si2)2], can be viewed as a tetrahedron located on a non-crystallographic twofold axis, which passes through the Zr atom and between the two N atoms of each cyclo­hexane-based ligand. The amide N atoms form two almost perpendicular planes with the central Zr atom, with a dihedral angle of 87.23 (18)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802015660/ac6011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802015660/ac6011Isup2.hkl
Contains datablock I

CCDC reference: 173961

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.047
  • wR factor = 0.109
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.04 From the CIF: _reflns_number_total 4626 Count of symmetry unique reflns 3149 Completeness (_total/calc) 146.90% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1477 Fraction of Friedel pairs measured 0.469 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Group 4 metal complexes containing bidentate bis(amide) or tetradentate bis(amidinate) ligands are promising systems for applications in catalysis because of their relationship to the well studied metallocene analogues Cp2MX2, bis(amide) (R2N)2MX2 (Minhas et al., 1996), and bis(amidinate) [N(R)C(R')N(R)]2MX2 (Bambirra et al., 2001; Foley et al., 2000). An attractive goal in this area is to develop chiral metal complexes for exploitation in stereoselective catalysis (Hagadorn & Arnold, 1998). The (1R,2R)-DACH served as broad-range chiral reagents has been proved a useful building block (Larrow et al., 1994). Recently, we reported the chemistry of its lithium derivatives, including mono- and dilithium (1R,2R)-(-)-1,2-(NHSiMe3)2-C6H10, and grew single crystals suitable for X-ray diffraction analysis (Li et al., 2002). Using this approach for the preparation of transition-metal complexes, we now reported the syntheses and structures of zirconium bis(amide) tetra-dentate complex, (I).

The molecular structure of (I) is shown in Fig. 1. The two cyclohexyl groups adopt chair conformations. The molecule of (I) is located on a crstallographic twofold axis, which passes through the Zr atom and the center of the N2—N1 and N3—N4 bonds, and therefore has high symmetry (Fig. 2). The structure can be viewed as a tetrahedron, with the metal ion in the center bonded to two bidentate ligands.

All the amide N atoms are sp2-hybridized (for example, the sum of the angles around N1 is 358.5°). The geometry around Zr is distorted tetrahedral, with the four Zr—N bond distances in the range 2.058 (4)–2.077 (5) Å and similar to the literature values (Lee et al., 2000). The five-membered Zr—N—C—C—N ring adopts an envelope conformation. From Table 1, we note that the intraannular N—Zr—N' angles, N1—Zr1—N2 [86.8 (2)°] and N3—Zr1—N4 [86.72 (19)°], are significantly smaller than the ideal tetrahedral value due to chelation, while the other two N—Zr—N' angles between the two chelate rings, N1—Zr1—N3 [121.71 (19)°] and N2—Zr1—N4 [119.06 (18)°] are correspondingly larger. The N1—Zr1—N2 and N3—Zr1—N4 planes are almost vertical and the dihedral angle is 92.8°. In addition, the two NSiMe3 groups related by the crystallographically imposed C2 axis are symmetrically placed above and below the opposite N—Zr—N' plane, similar to the complex {(±)-trans-1,2-(NSiMe3)2-C6H10}TiI2 (Tsuie et al., 1997).

Experimental top

Li2[(1R,2R)-(-)-1,2-(NSiMe3)2-C6H10] can be translated to its sodium salt easily in hexane. When two equivalents of NaBut was added to the clear solution of dilithium salt at room temperature, a white precipitate formed immediately. The mixture was stirred overnight and filtered. The white precipitate which was isolated was dried in a vacuum to give Na2[(1R,2R)-(-)-1,2-(NSiMe3)2-C6H10]. Treatment of Na2[(1R,2R)-(-)-1,2-(NSiMe3)2-C6H10] with a half equivalent of ZrCl4 in toluene at low temperature gave a yellow solution. After filtering, the reaction afforded a colorless crystalline product in high yield. Spectroscopic analysis, 1H NMR (CDCl3, δ, p.p.m.): 0.02 (s, 36H, SiMe3), 1.15 (m, 8H, CH), 1.59 (m, 8H, CH), 3.56 (m, 4H, CH); 13C NMR (CDCl3, δ, p.p.m.): 2.42, 25.83, 36.26, 65.95.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. The position of the amine H atom was refined freely along with an isotropic displacement parameter. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radii.
[Figure 2] Fig. 2. A diagram of the molecule of (I), viewed along the crstallographic twofold axis, all H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram of the title complex.
bis[(1R,2R)-(-)-1,2-bis(trimethylsilylamino)cyclohexane-κ2N,N']zirconium top
Crystal data top
[Zr(C12H28N2Si2)2]Dx = 1.125 Mg m3
Mr = 604.31Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31Cell parameters from 956 reflections
a = 10.473 (5) Åθ = 2.3–27.0°
c = 28.166 (18) ŵ = 0.46 mm1
V = 2676 (2) Å3T = 298 K
Z = 3Block, colorless
F(000) = 9720.35 × 0.30 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4626 independent reflections
Radiation source: fine-focus sealed tube4526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1211
Tmin = 0.856, Tmax = 0.956k = 1212
11157 measured reflectionsl = 3320
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0337P)2 + 2.5967P]
where P = (Fo2 + 2Fc2)/3
S = 1.28(Δ/σ)max = 0.003
4626 reflectionsΔρmax = 0.48 e Å3
310 parametersΔρmin = 1.04 e Å3
1 restraintAbsolute structure: Flack (1983), 0000 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
[Zr(C12H28N2Si2)2]Z = 3
Mr = 604.31Mo Kα radiation
Trigonal, P31µ = 0.46 mm1
a = 10.473 (5) ÅT = 298 K
c = 28.166 (18) Å0.35 × 0.30 × 0.10 mm
V = 2676 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4626 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4526 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.956Rint = 0.038
11157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.48 e Å3
S = 1.28Δρmin = 1.04 e Å3
4626 reflectionsAbsolute structure: Flack (1983), 0000 Friedel pairs
310 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.27699 (5)0.22031 (6)0.23036 (2)0.04014 (14)
Si10.3511 (2)0.4663 (2)0.14258 (8)0.0591 (5)
Si20.0084 (2)0.1279 (2)0.25372 (8)0.0604 (5)
Si30.2034 (2)0.3955 (2)0.31761 (8)0.0642 (5)
Si40.5477 (2)0.1437 (2)0.20739 (7)0.0529 (4)
N10.2373 (5)0.2965 (5)0.16764 (18)0.0419 (11)
N20.0851 (5)0.0247 (5)0.21697 (19)0.0499 (12)
N30.3166 (5)0.3367 (6)0.29350 (19)0.0463 (12)
N40.4678 (5)0.2158 (5)0.24396 (17)0.0407 (11)
C10.1160 (7)0.1704 (6)0.1428 (2)0.0454 (14)
H10.16020.12330.12420.054*
C20.0296 (8)0.2101 (8)0.1083 (3)0.0620 (18)
H2A0.09710.28260.08590.074*
H2B0.01880.25400.12570.074*
C30.0865 (8)0.0746 (9)0.0812 (3)0.074 (2)
H3A0.14390.10290.06130.088*
H3B0.03760.03790.06070.088*
C40.1880 (9)0.0458 (9)0.1146 (3)0.084 (3)
H4A0.25290.13330.09640.101*
H4B0.24870.01460.13140.101*
C50.1031 (8)0.0839 (8)0.1507 (3)0.071 (2)
H5A0.17180.15750.17270.085*
H5B0.05060.12530.13440.085*
C60.0061 (6)0.0528 (7)0.1781 (2)0.0501 (15)
H60.05030.09390.19280.060*
C70.4256 (11)0.4550 (11)0.0833 (4)0.101 (3)
H7A0.47700.40100.08630.152*
H7B0.49230.55270.07200.152*
H7C0.34570.40560.06130.152*
C80.2634 (12)0.5829 (9)0.1356 (4)0.101 (3)
H8A0.18950.54200.11120.152*
H8B0.33720.68130.12690.152*
H8C0.21860.58540.16510.152*
C90.5089 (9)0.5618 (9)0.1851 (4)0.093 (3)
H9A0.47330.57710.21480.140*
H9B0.58070.65520.17210.140*
H9C0.55330.50200.19020.140*
C100.1699 (9)0.1626 (11)0.2808 (4)0.094 (3)
H10A0.15450.07580.29730.142*
H10B0.20460.24330.30270.142*
H10C0.24190.18640.25620.142*
C110.0191 (13)0.3010 (10)0.2233 (4)0.118 (4)
H11A0.07250.31530.19430.177*
H11B0.07400.38420.24380.177*
H11C0.07510.29130.21650.177*
C120.1440 (9)0.0853 (10)0.3022 (3)0.077 (2)
H12A0.23960.05320.28880.115*
H12B0.11450.17210.32100.115*
H12C0.14790.00850.32190.115*
C130.4331 (6)0.3223 (7)0.3186 (2)0.0448 (14)
H130.38470.22800.33560.054*
C140.5178 (8)0.4452 (8)0.3560 (3)0.0645 (18)
H14A0.57290.53980.34030.077*
H14B0.44830.45010.37760.077*
C150.6230 (10)0.4127 (9)0.3838 (3)0.076 (2)
H15A0.67920.49260.40590.092*
H15B0.56660.32300.40200.092*
C160.7270 (10)0.3951 (11)0.3514 (3)0.089 (3)
H16A0.78590.36560.36990.107*
H16B0.79320.48930.33670.107*
C170.6456 (8)0.2808 (9)0.3127 (3)0.0659 (19)
H17A0.58780.18430.32710.079*
H17B0.71660.27740.29140.079*
C180.5441 (6)0.3184 (6)0.2845 (2)0.0441 (14)
H180.60460.41770.27150.053*
C190.1210 (12)0.3026 (12)0.3753 (3)0.106 (3)
H19A0.03400.20940.36930.159*
H19B0.09550.36370.39370.159*
H19C0.19120.28680.39240.159*
C200.2951 (12)0.5980 (10)0.3254 (4)0.109 (3)
H20A0.38170.63080.34460.163*
H20B0.22860.62290.34080.163*
H20C0.32250.64510.29500.163*
C210.0532 (10)0.3464 (12)0.2739 (4)0.103 (3)
H21A0.09400.36910.24240.155*
H21B0.00480.40180.28050.155*
H21C0.01680.24290.27610.155*
C220.7322 (8)0.2875 (10)0.1855 (3)0.077 (2)
H22A0.72760.37290.17570.116*
H22B0.76070.24950.15910.116*
H22C0.80340.31430.21050.116*
C230.4228 (10)0.0661 (11)0.1551 (3)0.087 (3)
H23A0.32290.00700.16590.131*
H23B0.45030.00620.13690.131*
H23C0.43090.14520.13570.131*
C240.5645 (11)0.0086 (10)0.2349 (4)0.094 (3)
H24A0.65410.03190.25300.140*
H24B0.56640.07150.21040.140*
H24C0.48180.06480.25540.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0392 (3)0.0448 (3)0.0367 (3)0.0212 (3)0.0049 (3)0.0025 (3)
Si10.0565 (11)0.0578 (11)0.0561 (12)0.0234 (9)0.0005 (10)0.0135 (10)
Si20.0561 (10)0.0488 (10)0.0645 (13)0.0174 (8)0.0017 (9)0.0103 (9)
Si30.0790 (13)0.0715 (13)0.0574 (13)0.0490 (11)0.0055 (11)0.0091 (10)
Si40.0527 (10)0.0657 (11)0.0515 (11)0.0380 (9)0.0026 (8)0.0057 (9)
N10.038 (2)0.050 (3)0.040 (3)0.024 (2)0.005 (2)0.000 (2)
N20.038 (3)0.051 (3)0.048 (3)0.012 (2)0.002 (2)0.000 (2)
N30.046 (3)0.052 (3)0.040 (3)0.023 (2)0.001 (2)0.006 (2)
N40.038 (2)0.049 (3)0.038 (3)0.024 (2)0.007 (2)0.003 (2)
C10.053 (3)0.053 (3)0.035 (3)0.030 (3)0.004 (3)0.005 (3)
C20.062 (4)0.075 (4)0.054 (4)0.037 (4)0.009 (3)0.002 (4)
C30.071 (5)0.091 (6)0.053 (5)0.038 (4)0.024 (4)0.015 (4)
C40.070 (5)0.088 (6)0.074 (6)0.024 (4)0.038 (4)0.020 (5)
C50.059 (4)0.064 (4)0.063 (5)0.011 (3)0.009 (4)0.000 (4)
C60.037 (3)0.062 (4)0.043 (4)0.018 (3)0.016 (3)0.015 (3)
C70.098 (7)0.120 (8)0.088 (7)0.057 (6)0.040 (6)0.037 (6)
C80.140 (8)0.063 (5)0.112 (8)0.060 (6)0.013 (7)0.012 (5)
C90.070 (5)0.059 (5)0.117 (8)0.007 (4)0.000 (5)0.026 (5)
C100.061 (5)0.111 (7)0.090 (7)0.027 (5)0.013 (5)0.035 (6)
C110.158 (10)0.062 (5)0.124 (10)0.048 (6)0.007 (8)0.001 (6)
C120.064 (5)0.091 (6)0.075 (6)0.038 (4)0.016 (4)0.033 (5)
C130.045 (3)0.044 (3)0.038 (3)0.016 (3)0.008 (3)0.002 (3)
C140.076 (5)0.061 (4)0.046 (4)0.027 (4)0.012 (4)0.017 (3)
C150.090 (6)0.074 (5)0.050 (5)0.031 (4)0.029 (4)0.011 (4)
C160.081 (5)0.115 (7)0.070 (6)0.049 (5)0.030 (5)0.007 (5)
C170.065 (4)0.092 (5)0.058 (5)0.052 (4)0.017 (4)0.005 (4)
C180.042 (3)0.047 (3)0.039 (3)0.019 (3)0.009 (3)0.000 (3)
C190.130 (8)0.129 (8)0.073 (6)0.075 (7)0.042 (6)0.009 (6)
C200.150 (9)0.091 (6)0.114 (9)0.082 (7)0.020 (7)0.022 (6)
C210.096 (6)0.142 (8)0.111 (8)0.089 (7)0.006 (6)0.035 (7)
C220.073 (5)0.102 (6)0.061 (5)0.047 (4)0.017 (4)0.003 (4)
C230.096 (6)0.122 (7)0.062 (6)0.068 (6)0.024 (5)0.040 (5)
C240.115 (7)0.090 (6)0.106 (8)0.074 (6)0.004 (6)0.005 (6)
Geometric parameters (Å, º) top
Zr1—N42.058 (4)C9—H9A0.9600
Zr1—N22.064 (5)C9—H9B0.9600
Zr1—N12.064 (5)C9—H9C0.9600
Zr1—N32.077 (5)C10—H10A0.9600
Si1—N11.721 (5)C10—H10B0.9600
Si1—C81.870 (8)C10—H10C0.9600
Si1—C71.870 (9)C11—H11A0.9600
Si1—C91.874 (9)C11—H11B0.9600
Si2—N21.728 (5)C11—H11C0.9600
Si2—C121.857 (9)C12—H12A0.9600
Si2—C101.877 (8)C12—H12B0.9600
Si2—C111.892 (10)C12—H12C0.9600
Si3—N31.726 (5)C13—C181.524 (9)
Si3—C201.852 (9)C13—C141.554 (8)
Si3—C211.857 (10)C13—H130.9800
Si3—C191.868 (9)C14—C151.522 (10)
Si4—N41.721 (5)C14—H14A0.9700
Si4—C241.859 (8)C14—H14B0.9700
Si4—C221.864 (8)C15—C161.501 (12)
Si4—C231.864 (8)C15—H15A0.9700
N1—C11.473 (7)C15—H15B0.9700
N2—C61.488 (8)C16—C171.524 (11)
N3—C131.481 (8)C16—H16A0.9700
N4—C181.497 (7)C16—H16B0.9700
C1—C21.521 (8)C17—C181.527 (8)
C1—C61.553 (9)C17—H17A0.9700
C1—H10.9800C17—H17B0.9700
C2—C31.533 (10)C18—H180.9800
C2—H2A0.9700C19—H19A0.9600
C2—H2B0.9700C19—H19B0.9600
C3—C41.505 (12)C19—H19C0.9600
C3—H3A0.9700C20—H20A0.9600
C3—H3B0.9700C20—H20B0.9600
C4—C51.530 (11)C20—H20C0.9600
C4—H4A0.9700C21—H21A0.9600
C4—H4B0.9700C21—H21B0.9600
C5—C61.522 (9)C21—H21C0.9600
C5—H5A0.9700C22—H22A0.9600
C5—H5B0.9700C22—H22B0.9600
C6—H60.9800C22—H22C0.9600
C7—H7A0.9600C23—H23A0.9600
C7—H7B0.9600C23—H23B0.9600
C7—H7C0.9600C23—H23C0.9600
C8—H8A0.9600C24—H24A0.9600
C8—H8B0.9600C24—H24B0.9600
C8—H8C0.9600C24—H24C0.9600
N4—Zr1—N2119.06 (18)Si1—C9—H9C109.5
N4—Zr1—N1123.59 (19)H9A—C9—H9C109.5
N2—Zr1—N186.8 (2)H9B—C9—H9C109.5
N4—Zr1—N386.72 (19)Si2—C10—H10A109.5
N2—Zr1—N3123.3 (2)Si2—C10—H10B109.5
N1—Zr1—N3121.71 (19)H10A—C10—H10B109.5
N1—Si1—C8113.9 (4)Si2—C10—H10C109.5
N1—Si1—C7113.3 (4)H10A—C10—H10C109.5
C8—Si1—C7107.7 (5)H10B—C10—H10C109.5
N1—Si1—C9105.1 (3)Si2—C11—H11A109.5
C8—Si1—C9108.0 (5)Si2—C11—H11B109.5
C7—Si1—C9108.7 (5)H11A—C11—H11B109.5
N2—Si2—C12105.8 (3)Si2—C11—H11C109.5
N2—Si2—C10112.3 (4)H11A—C11—H11C109.5
C12—Si2—C10108.4 (4)H11B—C11—H11C109.5
N2—Si2—C11113.1 (4)Si2—C12—H12A109.5
C12—Si2—C11107.1 (5)Si2—C12—H12B109.5
C10—Si2—C11109.8 (5)H12A—C12—H12B109.5
N3—Si3—C20113.6 (4)Si2—C12—H12C109.5
N3—Si3—C21106.1 (3)H12A—C12—H12C109.5
C20—Si3—C21106.2 (5)H12B—C12—H12C109.5
N3—Si3—C19112.1 (4)N3—C13—C18112.4 (5)
C20—Si3—C19109.5 (5)N3—C13—C14113.5 (5)
C21—Si3—C19109.0 (5)C18—C13—C14108.8 (5)
N4—Si4—C24113.8 (4)N3—C13—H13107.3
N4—Si4—C22112.2 (3)C18—C13—H13107.3
C24—Si4—C22109.0 (4)C14—C13—H13107.3
N4—Si4—C23105.9 (3)C15—C14—C13109.9 (6)
C24—Si4—C23107.6 (5)C15—C14—H14A109.7
C22—Si4—C23108.0 (4)C13—C14—H14A109.7
C1—N1—Si1125.0 (4)C15—C14—H14B109.7
C1—N1—Zr1108.0 (4)C13—C14—H14B109.7
Si1—N1—Zr1125.5 (3)H14A—C14—H14B108.2
C6—N2—Si2125.2 (4)C16—C15—C14111.5 (7)
C6—N2—Zr1107.4 (4)C16—C15—H15A109.3
Si2—N2—Zr1125.5 (3)C14—C15—H15A109.3
C13—N3—Si3126.6 (4)C16—C15—H15B109.3
C13—N3—Zr1106.4 (4)C14—C15—H15B109.3
Si3—N3—Zr1125.1 (3)H15A—C15—H15B108.0
C18—N4—Si4124.7 (4)C15—C16—C17112.1 (7)
C18—N4—Zr1107.6 (3)C15—C16—H16A109.2
Si4—N4—Zr1126.1 (3)C17—C16—H16A109.2
N1—C1—C2115.0 (5)C15—C16—H16B109.2
N1—C1—C6111.8 (5)C17—C16—H16B109.2
C2—C1—C6108.6 (5)H16A—C16—H16B107.9
N1—C1—H1107.0C16—C17—C18110.9 (6)
C2—C1—H1107.0C16—C17—H17A109.5
C6—C1—H1107.0C18—C17—H17A109.5
C1—C2—C3111.7 (6)C16—C17—H17B109.5
C1—C2—H2A109.3C18—C17—H17B109.5
C3—C2—H2A109.3H17A—C17—H17B108.0
C1—C2—H2B109.3N4—C18—C13111.1 (5)
C3—C2—H2B109.3N4—C18—C17113.8 (5)
H2A—C2—H2B107.9C13—C18—C17108.6 (5)
C4—C3—C2111.4 (6)N4—C18—H18107.7
C4—C3—H3A109.3C13—C18—H18107.7
C2—C3—H3A109.3C17—C18—H18107.7
C4—C3—H3B109.3Si3—C19—H19A109.5
C2—C3—H3B109.3Si3—C19—H19B109.5
H3A—C3—H3B108.0H19A—C19—H19B109.5
C3—C4—C5112.0 (6)Si3—C19—H19C109.5
C3—C4—H4A109.2H19A—C19—H19C109.5
C5—C4—H4A109.2H19B—C19—H19C109.5
C3—C4—H4B109.2Si3—C20—H20A109.5
C5—C4—H4B109.2Si3—C20—H20B109.5
H4A—C4—H4B107.9H20A—C20—H20B109.5
C6—C5—C4110.6 (6)Si3—C20—H20C109.5
C6—C5—H5A109.5H20A—C20—H20C109.5
C4—C5—H5A109.5H20B—C20—H20C109.5
C6—C5—H5B109.5Si3—C21—H21A109.5
C4—C5—H5B109.5Si3—C21—H21B109.5
H5A—C5—H5B108.1H21A—C21—H21B109.5
N2—C6—C5114.6 (6)Si3—C21—H21C109.5
N2—C6—C1111.3 (5)H21A—C21—H21C109.5
C5—C6—C1109.4 (6)H21B—C21—H21C109.5
N2—C6—H6107.0Si4—C22—H22A109.5
C5—C6—H6107.0Si4—C22—H22B109.5
C1—C6—H6107.0H22A—C22—H22B109.5
Si1—C7—H7A109.5Si4—C22—H22C109.5
Si1—C7—H7B109.5H22A—C22—H22C109.5
H7A—C7—H7B109.5H22B—C22—H22C109.5
Si1—C7—H7C109.5Si4—C23—H23A109.5
H7A—C7—H7C109.5Si4—C23—H23B109.5
H7B—C7—H7C109.5H23A—C23—H23B109.5
Si1—C8—H8A109.5Si4—C23—H23C109.5
Si1—C8—H8B109.5H23A—C23—H23C109.5
H8A—C8—H8B109.5H23B—C23—H23C109.5
Si1—C8—H8C109.5Si4—C24—H24A109.5
H8A—C8—H8C109.5Si4—C24—H24B109.5
H8B—C8—H8C109.5H24A—C24—H24B109.5
Si1—C9—H9A109.5Si4—C24—H24C109.5
Si1—C9—H9B109.5H24A—C24—H24C109.5
H9A—C9—H9B109.5H24B—C24—H24C109.5
C8—Si1—N1—C176.0 (6)N1—Zr1—N4—C18116.0 (4)
C7—Si1—N1—C147.6 (6)N3—Zr1—N4—C1810.5 (4)
C9—Si1—N1—C1166.1 (5)N2—Zr1—N4—Si456.9 (4)
C8—Si1—N1—Zr1119.5 (5)N1—Zr1—N4—Si450.0 (4)
C7—Si1—N1—Zr1116.9 (5)N3—Zr1—N4—Si4176.5 (3)
C9—Si1—N1—Zr11.6 (5)Si1—N1—C1—C237.8 (7)
N4—Zr1—N1—C1112.9 (4)Zr1—N1—C1—C2155.4 (5)
N2—Zr1—N1—C110.2 (4)Si1—N1—C1—C6162.2 (4)
N3—Zr1—N1—C1137.8 (3)Zr1—N1—C1—C631.0 (5)
N4—Zr1—N1—Si153.8 (4)N1—C1—C2—C3175.6 (6)
N2—Zr1—N1—Si1176.9 (3)C6—C1—C2—C358.2 (8)
N3—Zr1—N1—Si155.5 (4)C1—C2—C3—C455.0 (9)
C12—Si2—N2—C6168.6 (5)C2—C3—C4—C552.8 (9)
C10—Si2—N2—C650.6 (6)C3—C4—C5—C655.8 (9)
C11—Si2—N2—C674.4 (7)Si2—N2—C6—C537.4 (8)
C12—Si2—N2—Zr16.4 (5)Zr1—N2—C6—C5157.7 (5)
C10—Si2—N2—Zr1111.7 (5)Si2—N2—C6—C1162.2 (4)
C11—Si2—N2—Zr1123.4 (5)Zr1—N2—C6—C132.9 (6)
N4—Zr1—N2—C6140.0 (4)C4—C5—C6—N2175.0 (6)
N1—Zr1—N2—C612.9 (4)C4—C5—C6—C159.2 (8)
N3—Zr1—N2—C6113.4 (4)N1—C1—C6—N244.0 (7)
N4—Zr1—N2—Si255.2 (4)C2—C1—C6—N2172.0 (5)
N1—Zr1—N2—Si2177.8 (4)N1—C1—C6—C5171.7 (5)
N3—Zr1—N2—Si251.4 (4)C2—C1—C6—C560.3 (7)
C20—Si3—N3—C1377.3 (6)Si3—N3—C13—C18160.6 (4)
C21—Si3—N3—C13166.4 (6)Zr1—N3—C13—C1834.5 (5)
C19—Si3—N3—C1347.4 (6)Si3—N3—C13—C1436.6 (8)
C20—Si3—N3—Zr1120.5 (5)Zr1—N3—C13—C14158.5 (5)
C21—Si3—N3—Zr14.2 (5)N3—C13—C14—C15173.7 (6)
C19—Si3—N3—Zr1114.7 (5)C18—C13—C14—C1560.3 (8)
N4—Zr1—N3—C1313.0 (4)C13—C14—C15—C1655.9 (9)
N2—Zr1—N3—C13110.0 (4)C14—C15—C16—C1753.6 (10)
N1—Zr1—N3—C13141.0 (3)C15—C16—C17—C1855.5 (10)
N4—Zr1—N3—Si3178.1 (4)Si4—N4—C18—C13161.8 (4)
N2—Zr1—N3—Si355.2 (4)Zr1—N4—C18—C1331.9 (5)
N1—Zr1—N3—Si353.8 (4)Si4—N4—C18—C1739.0 (7)
C24—Si4—N4—C1876.3 (6)Zr1—N4—C18—C17154.8 (5)
C22—Si4—N4—C1848.0 (6)N3—C13—C18—N445.9 (7)
C23—Si4—N4—C18165.7 (5)C14—C13—C18—N4172.5 (5)
C24—Si4—N4—Zr1120.0 (4)N3—C13—C18—C17171.8 (5)
C22—Si4—N4—Zr1115.7 (4)C14—C13—C18—C1761.7 (7)
C23—Si4—N4—Zr12.0 (5)C16—C17—C18—N4176.3 (6)
N2—Zr1—N4—C18137.1 (3)C16—C17—C18—C1359.4 (8)

Experimental details

Crystal data
Chemical formula[Zr(C12H28N2Si2)2]
Mr604.31
Crystal system, space groupTrigonal, P31
Temperature (K)298
a, c (Å)10.473 (5), 28.166 (18)
V3)2676 (2)
Z3
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.35 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.856, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
11157, 4626, 4526
Rint0.038
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.109, 1.28
No. of reflections4626
No. of parameters310
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 1.04
Absolute structureFlack (1983), 0000 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Zr1—N42.058 (4)Zr1—N12.064 (5)
Zr1—N22.064 (5)Zr1—N32.077 (5)
N4—Zr1—N2119.06 (18)N4—Zr1—N386.72 (19)
N4—Zr1—N1123.59 (19)N2—Zr1—N3123.3 (2)
N2—Zr1—N186.8 (2)N1—Zr1—N3121.71 (19)
N2—Zr1—N1—C110.2 (4)N3—Zr1—N4—C1810.5 (4)
N1—Zr1—N2—C612.9 (4)N1—C1—C6—N244.0 (7)
N4—Zr1—N3—C1313.0 (4)N3—C13—C18—N445.9 (7)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds