organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

20,23,26,29,32,35,38,41-Octa­oxa-5,9,13-tri­aza­penta­cyclo­[15.14.10.13,30.17,11.115,19]tetra­tetra­conta-1,3(42),7,9,11(44),15(43),16,18,30-nona­ene-6,12-dione acetone mono­solvate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: jiang6128@yahoo.com.cn

(Received 5 October 2011; accepted 1 December 2011; online 14 December 2011)

In the crystal structure of the title compound, C33H39N3O10·C3H6O, the acetone mol­ecule is encapsulated into the cavity of the cryptand and fixed by two N—H⋯O and one C—H⋯O hydrogen bond. C—H⋯O and C—H⋯N inter­actions link neighbouring cryptands. The dihedral angles between the pyridine ring and the benzene rings are 86.47 (17) and 85.53 (13)°.

Related literature

Cryptands have been utilized as hosts to form supra­molecular assemblies, see: Balzani et al. (2000[Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. (2000). Angew. Chem. Int. Ed. 39, 3348-3391.]). Crown ether-based cryptands can form more stable supra­molecular complexes with paraquat, paraquat derivatives, diquat and secondary ammonium salts than the corresponding simple crown ethers by virtue of multiple non-covalent inter­actions, see: Huang et al. (2005[Huang, F. H., Zakharov, L. N., Rheingold, A. L., Ashraf-Khorassani, M. & Gibson, H. W. (2005). J. Org. Chem. 70, 809-813.]). The title compound was obtained by the reaction of bis­(5-amino­methyl-1,3-phenyl­ene)-26-crown-8 (Wester & Voegtle, 1980[Wester, N. & Voegtle, F. (1980). Chem. Ber. 113, 1487-1493.]) with pyridine-3,5-dicarbonyl dichloride (Chen et al., 2010[Chen, M. J., Han, S. J., Jiang, L. S., Zhou, S. G., Jiang, F., Xu, Z. K., Liang, J. D. & Zhang, S. H. (2010). Chem. Commun., 46, 3932-3934.]).

[Scheme 1]

Experimental

Crystal data
  • C33H39N3O10·C3H6O

  • Mr = 695.75

  • Tetragonal, P 43

  • a = 14.232 (3) Å

  • c = 17.615 (4) Å

  • V = 3567.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.976

  • 19761 measured reflections

  • 3626 independent reflections

  • 2127 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.172

  • S = 1.00

  • 3626 reflections

  • 453 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.36 3.209 (7) 170
N2—H2⋯O1 0.86 2.53 3.382 (7) 172
C9—H9⋯O1 0.93 2.43 3.271 (7) 151
C3—H3⋯O11i 0.93 2.46 3.356 (6) 161
C33—H33B⋯N3ii 0.97 2.60 3.401 (8) 140
Symmetry codes: (i) [-y+2, x, z-{\script{1\over 4}}]; (ii) [-y+1, x, z+{\script{3\over 4}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of inclusion complexes has been widely investigated by scientists all over the world with various applications. Cryptands have been universally utilized as hosts to form supramolecular assemblies, which have great potential applications in molecular devices and material science (Balzani et al., 2000). Recently, crown ether-based cryptands have attracted much attention due to their ability to form more stable supramolecular complexes with paraquat, paraquat derivatives, diquat and secondary ammonium salts than corresponding simple crown ethers by virtue of multiple noncovalent interactions (Huang et al., 2005). We are interested in developing novel crown ether-based cryptands and their applications in supramolecular self-assembly. Herein, we report a novel crown ether-based cryptand and its crystal structure, which was obtained by the reaction of bis(5-aminomethyl-1,3-phenylene)-26-crown-8 (Wester & Voegtle, 1980) with pyridine-3,5-dicarbonyl dichloride (Chen et al., 2010).

The crystal structure of the title compound is illustrated in Fig.1. The dihedral angle between the benzene ring of C17/C10/C18/C14/C12/C16 and the benzene ring of C15/C5/C8/C7/C6/C3 is 15.6 (3)°, which means the two benzene rings are approximately parallel. So it is advantageous to involve small organic compounds. The acetone molecule forms three hydrogen bonds to the cryptand (see Table 1).

Related literature top

Cryptands have been utilized as hosts to form supramolecular assemblies, see: Balzani et al. (2000). Crown ether-based cryptands can form more stable supramolecular complexes with paraquat, paraquat derivatives, diquat and secondary ammonium salts than the corresponding simple crown ethers by virtue of multiple non-covalent interactions, see: Huang et al. (2005). The title compound was obtained by the reaction of bis(5-aminomethyl-1,3-phenylene)-26-crown-8 (Wester & Voegtle, 1980) with pyridine-3,5-dicarbonyl dichloride (Chen et al., 2010).

Experimental top

To a stirred solution of triethylamine in dichloromethane (120 ml), was added bis(5-aminomethyl-1,3-phenylene)-26-crown-8 (253 mg, 0.5 mmol) in dichloromethane (20 ml) and pyridine-3,5-dicarbonyl dichloride (102 mg, 0.5 mmol) in dichloromethane (20 ml) simultaneously with two pressure-equalizing dropping funnels at 5 ml/h. After addition, the reaction mixture was strirred for 18 h at room temperature. Water (30 ml) was added, and then the resulting mixture was neutralized and extracted with dichloromethane. The organic layer was dried over anhydrous MgSO4 and concentrated. The crude product was separated by column chromatography to give the desired cryptand (64 mg, 20%) as a white solid. The crystal was obtained by slow evaporation of mixed solvent of dichloromethane and acetone at room temperature.

Refinement top

All H atoms were fixed geometrically and were treated as riding on their parent C and N atoms, with C—H distances in the range of 0.93–0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and Uiso(H) = 1.2 Ueq(C,N) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing.
20,23,26,29,32,35,38,41-octaoxa-5,9,13- triazapentacyclo[15.14.10.13,30.17,11.115,19]tetratetraconta- 1,3(42),7,9,11 (44),15 (43),16,18,30-nonaene-6,12-dione acetone monosolvate top
Crystal data top
C33H39N3O10·C3H6ODx = 1.295 Mg m3
Mr = 695.75Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 19761 reflections
Hall symbol: P 4cwθ = 1.4–26.0°
a = 14.232 (3) ŵ = 0.10 mm1
c = 17.615 (4) ÅT = 298 K
V = 3567.8 (12) Å3Block, colourless
Z = 40.32 × 0.28 × 0.25 mm
F(000) = 1480
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3626 independent reflections
Radiation source: fine-focus sealed tube2127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
phi and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1716
Tmin = 0.970, Tmax = 0.976k = 1717
19761 measured reflectionsl = 2113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1014P)2]
where P = (Fo2 + 2Fc2)/3
3626 reflections(Δ/σ)max = 0.002
453 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C33H39N3O10·C3H6OZ = 4
Mr = 695.75Mo Kα radiation
Tetragonal, P43µ = 0.10 mm1
a = 14.232 (3) ÅT = 298 K
c = 17.615 (4) Å0.32 × 0.28 × 0.25 mm
V = 3567.8 (12) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3626 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2127 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.976Rint = 0.059
19761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.172H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
3626 reflectionsΔρmin = 0.19 e Å3
453 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Since this is a light atom structure (it does not contain any atoms heavier than Si) and since the data collection was carried out using Mo radiation, it is impossible to unambiguously determine the absolute configuration of this molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8054 (4)0.7413 (4)0.2477 (3)0.1119 (17)
O20.7434 (4)0.4588 (3)0.0601 (3)0.0993 (15)
O30.7236 (3)0.9474 (3)0.0035 (2)0.0830 (12)
O110.9501 (2)0.9872 (3)0.37266 (19)0.0658 (10)
O40.6174 (3)0.9965 (3)0.3937 (2)0.0740 (10)
O70.5654 (3)0.5410 (3)0.4265 (3)0.0881 (13)
O80.8974 (3)0.5340 (3)0.4588 (3)0.0912 (13)
O50.5101 (3)0.8513 (3)0.4713 (2)0.0828 (12)
O60.4182 (4)0.6829 (3)0.4163 (3)0.1031 (15)
O91.0150 (4)0.6896 (4)0.5070 (5)0.141 (3)
O101.0690 (3)0.8355 (4)0.4078 (4)0.127 (2)
N20.7616 (3)0.9071 (3)0.1148 (2)0.0578 (10)
H20.77660.86250.14550.069*
N10.7660 (3)0.5452 (3)0.1635 (3)0.0701 (12)
H10.77010.60030.18340.084*
N30.7796 (3)0.6805 (4)0.0855 (2)0.0668 (12)
C10.7603 (3)0.6219 (4)0.0422 (3)0.0546 (12)
C20.7553 (4)0.5357 (4)0.0897 (3)0.0584 (13)
C30.8547 (4)0.9978 (3)0.2587 (3)0.0568 (13)
H30.90700.99590.22710.068*
C40.7574 (3)0.7870 (3)0.0188 (3)0.0495 (11)
C50.6878 (4)1.0033 (3)0.2752 (3)0.0579 (13)
H50.62771.00540.25440.070*
C60.8652 (4)0.9957 (3)0.3360 (3)0.0545 (12)
C70.7876 (3)0.9989 (3)0.3843 (3)0.0545 (12)
H70.79571.00000.43670.065*
C80.6990 (4)1.0006 (3)0.3530 (3)0.0578 (13)
C90.7524 (3)0.7122 (3)0.0686 (3)0.0511 (12)
H90.74380.72300.12020.061*
C100.6657 (4)0.4984 (4)0.3207 (4)0.0701 (15)
H100.61470.49050.28840.084*
C110.7524 (4)1.0015 (4)0.1435 (3)0.0670 (14)
H11A0.69091.02600.13050.080*
H11B0.79951.04140.12010.080*
C120.8172 (4)0.5212 (4)0.4178 (4)0.0719 (15)
C130.7736 (3)0.6112 (4)0.0360 (3)0.0608 (13)
H130.77870.55030.05460.073*
C140.7273 (4)0.5348 (4)0.4452 (3)0.0708 (15)
H140.71730.55150.49560.085*
C150.7646 (4)1.0030 (3)0.2283 (3)0.0576 (12)
C160.8306 (5)0.4957 (4)0.3418 (4)0.0747 (16)
H160.89100.48570.32340.090*
C170.7550 (5)0.4857 (4)0.2943 (3)0.0679 (15)
C180.6518 (4)0.5231 (4)0.3952 (3)0.0676 (14)
C190.7702 (3)0.7669 (4)0.0574 (3)0.0573 (13)
H190.77240.81710.09110.069*
C200.7474 (3)0.8878 (4)0.0420 (3)0.0536 (12)
C210.5283 (4)0.9426 (4)0.4984 (4)0.0808 (17)
H21A0.52550.94320.55350.097*
H21B0.48130.98580.47920.097*
C220.4860 (5)0.5395 (5)0.3770 (4)0.0870 (18)
H22A0.47090.47510.36380.104*
H22B0.50090.57300.33060.104*
C230.7716 (4)0.7518 (4)0.3107 (3)0.0712 (15)
C241.0285 (4)0.9579 (4)0.3280 (3)0.0741 (16)
H24A1.05281.01080.29940.089*
H24B1.00880.90990.29230.089*
C251.1021 (4)0.9204 (5)0.3775 (4)0.0819 (17)
H25A1.15930.90980.34880.098*
H25B1.11570.96450.41810.098*
C260.7707 (5)0.4622 (4)0.2112 (3)0.0782 (17)
H26A0.83190.43290.20540.094*
H26B0.72350.41740.19480.094*
C270.6231 (4)0.9722 (5)0.4727 (3)0.0779 (16)
H27A0.64431.02580.50200.093*
H27B0.66770.92130.47990.093*
C280.6695 (5)0.7563 (5)0.3211 (5)0.100 (2)
H28A0.64860.81990.31450.150*
H28B0.65380.73520.37130.150*
H28C0.63940.71670.28430.150*
C290.8342 (5)0.7579 (4)0.3779 (4)0.0857 (19)
H29A0.83230.69960.40520.129*
H29B0.81340.80800.41030.129*
H29C0.89730.77020.36150.129*
C300.4058 (5)0.5828 (5)0.4130 (5)0.105 (2)
H30A0.34930.56810.38460.126*
H30B0.39860.55800.46400.126*
C310.8920 (5)0.5784 (5)0.5309 (4)0.0841 (18)
H31A0.86890.53440.56850.101*
H31B0.84900.63120.52860.101*
C320.4120 (6)0.7166 (5)0.4873 (4)0.110 (3)
H32A0.46150.68870.51770.132*
H32B0.35230.69740.50880.132*
C330.4196 (5)0.8199 (5)0.4922 (4)0.095 (2)
H33A0.37330.84840.45910.114*
H33B0.40630.83970.54380.114*
C340.9884 (5)0.6118 (5)0.5524 (5)0.103 (2)
H34A0.98890.62990.60550.123*
H34B1.03320.56120.54560.123*
C351.1288 (5)0.7776 (6)0.4430 (6)0.118 (3)
H35A1.15990.81350.48250.142*
H35B1.17670.76000.40640.142*
C361.0958 (6)0.6952 (6)0.4760 (7)0.142 (4)
H36A1.09790.64710.43700.170*
H36B1.14130.67720.51430.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.133 (4)0.135 (4)0.068 (3)0.017 (3)0.006 (3)0.015 (3)
O20.150 (4)0.059 (3)0.089 (3)0.006 (2)0.010 (3)0.023 (2)
O30.129 (4)0.069 (3)0.051 (2)0.004 (2)0.012 (2)0.010 (2)
O110.065 (2)0.080 (2)0.052 (2)0.0050 (18)0.0022 (18)0.0076 (18)
O40.065 (2)0.094 (3)0.063 (3)0.0021 (19)0.0052 (19)0.002 (2)
O70.084 (3)0.106 (3)0.075 (3)0.008 (2)0.011 (2)0.010 (2)
O80.082 (3)0.106 (3)0.086 (3)0.010 (2)0.001 (2)0.014 (3)
O50.089 (3)0.083 (3)0.077 (3)0.011 (2)0.027 (2)0.016 (2)
O60.134 (4)0.090 (3)0.085 (3)0.011 (3)0.025 (3)0.012 (3)
O90.090 (4)0.117 (4)0.216 (7)0.007 (3)0.001 (4)0.079 (5)
O100.081 (3)0.121 (4)0.179 (6)0.004 (3)0.000 (3)0.063 (4)
N20.083 (3)0.048 (2)0.042 (2)0.0077 (19)0.012 (2)0.0021 (18)
N10.102 (4)0.052 (3)0.056 (3)0.003 (2)0.003 (2)0.007 (2)
N30.065 (3)0.091 (3)0.045 (2)0.013 (2)0.004 (2)0.018 (3)
C10.049 (3)0.068 (3)0.047 (3)0.008 (2)0.003 (2)0.016 (2)
C20.063 (3)0.049 (3)0.063 (4)0.003 (2)0.001 (3)0.017 (3)
C30.076 (3)0.050 (3)0.044 (3)0.003 (2)0.000 (2)0.006 (2)
C40.040 (2)0.064 (3)0.044 (3)0.001 (2)0.003 (2)0.009 (2)
C50.072 (3)0.047 (3)0.055 (3)0.002 (2)0.009 (3)0.001 (2)
C60.068 (3)0.047 (3)0.048 (3)0.002 (2)0.008 (2)0.002 (2)
C70.067 (3)0.056 (3)0.041 (3)0.003 (2)0.005 (2)0.004 (2)
C80.065 (3)0.050 (3)0.059 (3)0.001 (2)0.000 (3)0.002 (2)
C90.049 (3)0.061 (3)0.043 (3)0.001 (2)0.007 (2)0.010 (2)
C100.085 (4)0.054 (3)0.072 (4)0.003 (3)0.003 (3)0.004 (3)
C110.099 (4)0.049 (3)0.053 (3)0.011 (3)0.010 (3)0.004 (2)
C120.077 (4)0.071 (4)0.068 (4)0.000 (3)0.001 (3)0.016 (3)
C130.054 (3)0.075 (4)0.053 (3)0.010 (2)0.001 (2)0.020 (3)
C140.092 (4)0.065 (3)0.056 (3)0.002 (3)0.012 (3)0.010 (3)
C150.080 (4)0.046 (3)0.047 (3)0.000 (2)0.007 (3)0.003 (2)
C160.080 (4)0.060 (3)0.084 (5)0.004 (3)0.017 (4)0.015 (3)
C170.093 (4)0.049 (3)0.062 (4)0.003 (3)0.011 (3)0.006 (2)
C180.072 (4)0.065 (3)0.066 (4)0.004 (3)0.017 (3)0.007 (3)
C190.052 (3)0.081 (4)0.039 (3)0.006 (2)0.002 (2)0.002 (3)
C200.056 (3)0.065 (3)0.040 (3)0.005 (2)0.001 (2)0.000 (2)
C210.083 (4)0.088 (4)0.071 (4)0.004 (3)0.016 (3)0.018 (3)
C220.081 (4)0.092 (4)0.089 (5)0.013 (3)0.008 (4)0.015 (4)
C230.091 (4)0.056 (3)0.066 (4)0.003 (3)0.002 (3)0.004 (3)
C240.072 (4)0.087 (4)0.064 (4)0.005 (3)0.004 (3)0.002 (3)
C250.071 (4)0.096 (4)0.079 (4)0.000 (3)0.010 (3)0.010 (4)
C260.107 (5)0.054 (3)0.073 (4)0.002 (3)0.013 (3)0.003 (3)
C270.086 (4)0.090 (4)0.058 (4)0.004 (3)0.003 (3)0.009 (3)
C280.079 (5)0.082 (4)0.139 (6)0.014 (3)0.005 (4)0.010 (4)
C290.110 (5)0.067 (4)0.081 (4)0.000 (3)0.028 (4)0.001 (3)
C300.090 (5)0.087 (5)0.138 (7)0.015 (4)0.018 (5)0.018 (5)
C310.101 (5)0.081 (4)0.070 (4)0.014 (3)0.005 (3)0.010 (3)
C320.148 (7)0.106 (6)0.076 (5)0.042 (5)0.025 (5)0.005 (4)
C330.096 (5)0.086 (4)0.103 (5)0.021 (4)0.049 (4)0.005 (4)
C340.103 (5)0.093 (5)0.111 (6)0.004 (4)0.020 (4)0.035 (5)
C350.077 (5)0.112 (6)0.166 (8)0.019 (4)0.003 (5)0.039 (6)
C360.085 (5)0.139 (8)0.202 (11)0.034 (5)0.022 (6)0.079 (8)
Geometric parameters (Å, º) top
O1—C231.219 (7)C12—C141.381 (8)
O2—C21.225 (6)C12—C161.401 (9)
O3—C201.215 (6)C13—H130.9300
O11—C61.376 (6)C14—C181.399 (8)
O11—C241.427 (6)C14—H140.9300
O4—C81.366 (6)C16—C171.370 (9)
O4—C271.436 (7)C16—H160.9300
O7—C181.372 (7)C17—C261.518 (8)
O7—C221.427 (8)C19—H190.9300
O8—C121.362 (7)C21—C271.485 (9)
O8—C311.421 (8)C21—H21A0.9700
O5—C211.408 (7)C21—H21B0.9700
O5—C331.412 (7)C22—C301.443 (9)
O6—C321.342 (8)C22—H22A0.9700
O6—C301.436 (8)C22—H22B0.9700
O9—C361.275 (9)C23—C281.465 (9)
O9—C341.418 (8)C23—C291.483 (8)
O10—C351.337 (9)C24—C251.464 (8)
O10—C251.403 (8)C24—H24A0.9700
N2—C201.328 (6)C24—H24B0.9700
N2—C111.441 (6)C25—H25A0.9700
N2—H20.8600C25—H25B0.9700
N1—C21.316 (7)C26—H26A0.9700
N1—C261.452 (7)C26—H26B0.9700
N1—H10.8600C27—H27A0.9700
N3—C131.320 (7)C27—H27B0.9700
N3—C191.333 (7)C28—H28A0.9600
C1—C91.370 (7)C28—H28B0.9600
C1—C131.400 (7)C28—H28C0.9600
C1—C21.487 (7)C29—H29A0.9600
C3—C61.370 (7)C29—H29B0.9600
C3—C151.393 (7)C29—H29C0.9600
C3—H30.9300C30—H30A0.9700
C4—C91.381 (7)C30—H30B0.9700
C4—C191.384 (7)C31—C341.500 (9)
C4—C201.498 (7)C31—H31A0.9700
C5—C151.369 (7)C31—H31B0.9700
C5—C81.381 (7)C32—C331.477 (10)
C5—H50.9300C32—H32A0.9700
C6—C71.394 (7)C32—H32B0.9700
C7—C81.377 (7)C33—H33A0.9700
C7—H70.9300C33—H33B0.9700
C9—H90.9300C34—H34A0.9700
C10—C171.364 (8)C34—H34B0.9700
C10—C181.373 (8)C35—C361.390 (11)
C10—H100.9300C35—H35A0.9700
C11—C151.503 (7)C35—H35B0.9700
C11—H11A0.9700C36—H36A0.9700
C11—H11B0.9700C36—H36B0.9700
C6—O11—C24117.0 (4)C30—C22—H22A109.5
C8—O4—C27118.0 (4)O7—C22—H22B109.5
C18—O7—C22117.5 (5)C30—C22—H22B109.5
C12—O8—C31119.2 (5)H22A—C22—H22B108.1
C21—O5—C33111.8 (4)O1—C23—C28120.7 (6)
C32—O6—C30112.6 (6)O1—C23—C29119.7 (6)
C36—O9—C34122.1 (6)C28—C23—C29119.5 (7)
C35—O10—C25119.5 (6)O11—C24—C25109.7 (5)
C20—N2—C11121.2 (4)O11—C24—H24A109.7
C20—N2—H2119.4C25—C24—H24A109.7
C11—N2—H2119.4O11—C24—H24B109.7
C2—N1—C26119.6 (5)C25—C24—H24B109.7
C2—N1—H1120.2H24A—C24—H24B108.2
C26—N1—H1120.2O10—C25—C24107.4 (5)
C13—N3—C19115.9 (4)O10—C25—H25A110.2
C9—C1—C13116.6 (5)C24—C25—H25A110.2
C9—C1—C2125.4 (4)O10—C25—H25B110.2
C13—C1—C2118.0 (5)C24—C25—H25B110.2
O2—C2—N1121.9 (5)H25A—C25—H25B108.5
O2—C2—C1120.3 (5)N1—C26—C17111.8 (5)
N1—C2—C1117.7 (4)N1—C26—H26A109.3
C6—C3—C15118.9 (5)C17—C26—H26A109.3
C6—C3—H3120.5N1—C26—H26B109.3
C15—C3—H3120.5C17—C26—H26B109.3
C9—C4—C19117.5 (5)H26A—C26—H26B107.9
C9—C4—C20124.1 (4)O4—C27—C21108.2 (5)
C19—C4—C20118.3 (5)O4—C27—H27A110.1
C15—C5—C8120.5 (5)C21—C27—H27A110.1
C15—C5—H5119.8O4—C27—H27B110.1
C8—C5—H5119.8C21—C27—H27B110.1
C3—C6—O11124.3 (5)H27A—C27—H27B108.4
C3—C6—C7121.3 (5)C23—C28—H28A109.5
O11—C6—C7114.3 (4)C23—C28—H28B109.5
C8—C7—C6118.8 (5)H28A—C28—H28B109.5
C8—C7—H7120.6C23—C28—H28C109.5
C6—C7—H7120.6H28A—C28—H28C109.5
O4—C8—C7124.6 (5)H28B—C28—H28C109.5
O4—C8—C5115.1 (5)C23—C29—H29A109.5
C7—C8—C5120.2 (5)C23—C29—H29B109.5
C1—C9—C4120.3 (5)H29A—C29—H29B109.5
C1—C9—H9119.9C23—C29—H29C109.5
C4—C9—H9119.9H29A—C29—H29C109.5
C17—C10—C18119.6 (6)H29B—C29—H29C109.5
C17—C10—H10120.2O6—C30—C22110.1 (6)
C18—C10—H10120.2O6—C30—H30A109.6
N2—C11—C15110.6 (4)C22—C30—H30A109.6
N2—C11—H11A109.5O6—C30—H30B109.6
C15—C11—H11A109.5C22—C30—H30B109.6
N2—C11—H11B109.5H30A—C30—H30B108.2
C15—C11—H11B109.5O8—C31—C34108.5 (6)
H11A—C11—H11B108.1O8—C31—H31A110.0
O8—C12—C14124.9 (6)C34—C31—H31A110.0
O8—C12—C16115.3 (6)O8—C31—H31B110.0
C14—C12—C16119.7 (6)C34—C31—H31B110.0
N3—C13—C1125.3 (5)H31A—C31—H31B108.4
N3—C13—H13117.4O6—C32—C33114.0 (6)
C1—C13—H13117.4O6—C32—H32A108.8
C12—C14—C18118.4 (5)C33—C32—H32A108.8
C12—C14—H14120.8O6—C32—H32B108.8
C18—C14—H14120.8C33—C32—H32B108.8
C5—C15—C3120.2 (5)H32A—C32—H32B107.7
C5—C15—C11120.5 (5)O5—C33—C32111.5 (6)
C3—C15—C11119.2 (5)O5—C33—H33A109.3
C17—C16—C12120.2 (6)C32—C33—H33A109.3
C17—C16—H16119.9O5—C33—H33B109.3
C12—C16—H16119.9C32—C33—H33B109.3
C10—C17—C16120.7 (6)H33A—C33—H33B108.0
C10—C17—C26119.7 (6)O9—C34—C31110.5 (6)
C16—C17—C26119.7 (6)O9—C34—H34A109.6
O7—C18—C10124.1 (6)C31—C34—H34A109.6
O7—C18—C14114.5 (5)O9—C34—H34B109.6
C10—C18—C14121.3 (5)C31—C34—H34B109.6
N3—C19—C4124.4 (5)H34A—C34—H34B108.1
N3—C19—H19117.8O10—C35—C36119.9 (7)
C4—C19—H19117.8O10—C35—H35A107.4
O3—C20—N2122.4 (5)C36—C35—H35A107.4
O3—C20—C4121.0 (4)O10—C35—H35B107.4
N2—C20—C4116.5 (4)C36—C35—H35B107.4
O5—C21—C27109.0 (5)H35A—C35—H35B106.9
O5—C21—H21A109.9O9—C36—C35122.4 (7)
C27—C21—H21A109.9O9—C36—H36A106.7
O5—C21—H21B109.9C35—C36—H36A106.7
C27—C21—H21B109.9O9—C36—H36B106.7
H21A—C21—H21B108.3C35—C36—H36B106.7
O7—C22—C30110.6 (6)H36A—C36—H36B106.6
O7—C22—H22A109.5
C26—N1—C2—O24.6 (9)C18—C10—C17—C26177.6 (5)
C26—N1—C2—C1174.1 (5)C12—C16—C17—C101.2 (8)
C9—C1—C2—O2164.7 (5)C12—C16—C17—C26177.4 (5)
C13—C1—C2—O215.0 (7)C22—O7—C18—C104.1 (8)
C9—C1—C2—N116.6 (7)C22—O7—C18—C14173.9 (5)
C13—C1—C2—N1163.6 (5)C17—C10—C18—O7177.4 (5)
C15—C3—C6—O11177.6 (4)C17—C10—C18—C140.4 (8)
C15—C3—C6—C70.3 (7)C12—C14—C18—O7178.0 (5)
C24—O11—C6—C314.7 (7)C12—C14—C18—C100.0 (8)
C24—O11—C6—C7163.3 (4)C13—N3—C19—C41.7 (7)
C3—C6—C7—C82.6 (7)C9—C4—C19—N31.2 (7)
O11—C6—C7—C8175.4 (4)C20—C4—C19—N3179.7 (4)
C27—O4—C8—C711.6 (7)C11—N2—C20—O32.1 (8)
C27—O4—C8—C5166.1 (5)C11—N2—C20—C4179.0 (4)
C6—C7—C8—O4174.7 (4)C9—C4—C20—O3157.1 (5)
C6—C7—C8—C52.9 (7)C19—C4—C20—O321.3 (7)
C15—C5—C8—O4176.9 (4)C9—C4—C20—N219.9 (7)
C15—C5—C8—C70.9 (7)C19—C4—C20—N2161.7 (4)
C13—C1—C9—C40.3 (7)C33—O5—C21—C27178.5 (6)
C2—C1—C9—C4179.4 (4)C18—O7—C22—C30165.1 (5)
C19—C4—C9—C10.1 (7)C6—O11—C24—C25159.8 (5)
C20—C4—C9—C1178.5 (4)C35—O10—C25—C24167.0 (8)
C20—N2—C11—C15175.5 (5)O11—C24—C25—O1069.1 (7)
C31—O8—C12—C1410.5 (8)C2—N1—C26—C17163.6 (5)
C31—O8—C12—C16166.9 (5)C10—C17—C26—N180.1 (7)
C19—N3—C13—C11.3 (8)C16—C17—C26—N198.6 (6)
C9—C1—C13—N30.3 (7)C8—O4—C27—C21162.2 (5)
C2—C1—C13—N3179.9 (5)O5—C21—C27—O475.9 (6)
O8—C12—C14—C18177.1 (5)C32—O6—C30—C22123.8 (8)
C16—C12—C14—C180.2 (8)O7—C22—C30—O673.0 (8)
C8—C5—C15—C31.4 (7)C12—O8—C31—C34162.0 (5)
C8—C5—C15—C11177.2 (4)C30—O6—C32—C33177.1 (6)
C6—C3—C15—C51.8 (7)C21—O5—C33—C32160.8 (6)
C6—C3—C15—C11177.5 (4)O6—C32—C33—O566.5 (10)
N2—C11—C15—C597.7 (6)C36—O9—C34—C31133.9 (10)
N2—C11—C15—C378.0 (6)O8—C31—C34—O971.5 (8)
O8—C12—C16—C17176.7 (5)C25—O10—C35—C36177.2 (9)
C14—C12—C16—C170.8 (8)C34—O9—C36—C35168.2 (10)
C18—C10—C17—C161.0 (8)O10—C35—C36—O934.3 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.363.209 (7)170
N2—H2···O10.862.533.382 (7)172
C9—H9···O10.932.433.271 (7)151
C3—H3···O11i0.932.463.356 (6)161
C33—H33B···N3ii0.972.603.401 (8)140
Symmetry codes: (i) y+2, x, z1/4; (ii) y+1, x, z+3/4.

Experimental details

Crystal data
Chemical formulaC33H39N3O10·C3H6O
Mr695.75
Crystal system, space groupTetragonal, P43
Temperature (K)298
a, c (Å)14.232 (3), 17.615 (4)
V3)3567.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
19761, 3626, 2127
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.172, 1.00
No. of reflections3626
No. of parameters453
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.363.209 (7)170.1
N2—H2···O10.862.533.382 (7)172.3
C9—H9···O10.932.433.271 (7)151.0
C3—H3···O11i0.932.463.356 (6)160.7
C33—H33B···N3ii0.972.603.401 (8)139.6
Symmetry codes: (i) y+2, x, z1/4; (ii) y+1, x, z+3/4.
 

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Nos. 21072066 and 20672038) and the Natural Science Foundation of Guangdong Province of China (No. 8151063101000015).

References

First citationBalzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. (2000). Angew. Chem. Int. Ed. 39, 3348–3391.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M. J., Han, S. J., Jiang, L. S., Zhou, S. G., Jiang, F., Xu, Z. K., Liang, J. D. & Zhang, S. H. (2010). Chem. Commun., 46, 3932–3934.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, F. H., Zakharov, L. N., Rheingold, A. L., Ashraf-Khorassani, M. & Gibson, H. W. (2005). J. Org. Chem. 70, 809–813.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWester, N. & Voegtle, F. (1980). Chem. Ber. 113, 1487–1493.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds