Download citation
Acta Cryst. (2014). A70, C1634
Download citation
link to html
In the classical nuclear import pathway, the specific recognition between the nuclear receptor (importin-α) and the nuclear localization signals (NLSs) plays an essential role on facilitating the cargo import process. Importin-α has two separate NLS-binding sites (the major and the minor sites), accommodate NLSs, comprising of one (monopartite) or two clusters (bipartite) of basic residues connected by a 10 - 12 residue linker. The major NLS-binding site is the preferential binding site for most of the monopartite NLSs characterized to date. By screening random peptide libraries using importin-α variants as bait, the bound NLS sequences could be divided into six classes [1]. The class-3 minor site-specific NLSs and class-5 plant-specific NLSs feature a shorter basic cluster. The molecular basis of the specific binding between these non-classical NLSs and importin-α was not known and in particular, there was a lack of crystal structures of plant importin-α. Here, we present the first crystal structure of plant importin-α, and explain the differential binding specificity between the class-5 plant-specific NLSs and importin-α variants [2]. The binding conformation of the class-3 minor site-specific NLSs features an α-helical turn, that is distinct from the other NLSs reported structurally [3]. Comparative bioinformatic screens not only indicate both plant-specific and minor site-specific NLSs are much less prevalent than the classical NLSs, but also reveal a greater prevalence of these two classes of non-classical NLSs in rice the proteome, compared to the others from yeast, mammals, and even other plant species. Together, our data can help to characterize novel proteins containing non-classical NLSs destined for the cell nucleus by the classical nuclear import pathway.

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds