Download citation
Acta Cryst. (2014). A70, C1136
Download citation
link to html
A three dimensionally magnetically oriented microcrystal array (3D-MOMA) is attractive to determination of a crystal structure as well as a molecular structure because it does not require a single crystal with sufficient size and quality for diffraction studies. We have developed a novel method to fabricate 3D-MOMA and determined several crystal structures using the 3D-MOMAs[1],[2]. However, the structure determination through MOMA requires a solidification treatment with UV curable monomer prior to X-ray diffraction experiment. We have developed a new X-ray diffractometer equipped with a magnetic field generator, which makes it possible to collect diffraction data without the solidification treatment. In this poster, we describe X-ray diffraction analyses of a magnetically oriented microcrystal suspension (MOMS) of L-alanine without the solidification treatment. A suspension of L-alanine microcrystals was poured in a glass capillary and rotated at a constant speed in a magnetic circuit attached in the X-ray diffractometer. Then, diffraction images were collected every 60 seconds. In the initial phase, the diffraction pattern showed a broad shape similar to that from a powder sample. As time goes on, diffraction patterns have gradually changed to single-crystal like patterns. After 2 hours, the shape of diffraction spots became as sharp as that of a single crystal. This observation shows that the microcrystals are oriented in the same direction. Owing to the improvement of the magnetic circuit and X-ray diffractometer, the quality of the diffraction has been greatly improved compared to that reported previously[3]. Further details of the analyses will be shown in the poster.

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds