Download citation
Acta Cryst. (2014). A70, C776
Download citation
link to html
Thanks to their potential applications as light-emitting devices, chemical sensors and dye-sensitized solar cells, heteroleptic copper (I) complexes have been extensively studied. Cu(DPPE)(DMP)·PF6 (dppe= 1,2-bis(diphenylphosphino)ethane; dmp = 2,9-dimethyl-1,10-phenanthroline) crystallizes in the monoclinic system, P21/c, with two independent molecules in the asymmetric unit. Previous studies on this system [1,2] show strong temperature-dependent emission. The complex was studied at 90K under 355nm laser excitation. At this temperature, the luminescence decay for Cu(DPPE)(DMP)·PF6 is biexponential with lifetimes of ~3μs and ~28μs. Two time-resolved X-ray diffraction techniques were applied for studies: (1) a Laue technique at BioCARS ID-14 beamline at the Advanced Photon Source, and (2) monochromatic diffraction at a newly constructed in-house pump-probe monochromatic facility at the University at Buffalo. Structural changes determined with the two methods are in qualitative agreement; discrepancies in position of the Cu and P atoms were observed. The molecular distortions were smaller than those determined at 16K in the earlier synchrotron study by Vorontsov et al. [2]. Photodeformation maps (see Figure below), in which the increase in temperature on photoexcitation has been eliminated, clearly illustrate the photoinduced atomic shifts for both data sets. Results will be compared with those obtained for other studied heteroleptic copper (I) complexes, for instance Cu[(1,10-phenanthroline-N,N′) bis(triphenylphosphine)]·BF4 [3]. The in-house pump-probe facility is discussed by Radoslaw Kaminski at this meeting. Research funded by the National Science Foundation (CHE1213223). BioCARS Sector 14 at APS is supported by NIH (RR007707). The Advanced Photon Source is funded by the Office of Basic Energy Sciences, U.S. Department of Energy, (W-31-109-ENG-38). KNJ is supported by the Polish Ministry of Science and Higher Education through the "Mobility Plus" program.

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds