Download citation
Acta Cryst. (2014). A70, C363
Download citation
link to html
One of the most important scientific problems faced by our society is how to convert and store clean energy. In order to achieve a significant progress in this field we need to understand the fundamental dynamical processes that govern the transfer of energy on an atomic scale. For many energy devices such as solid-state batteries and solid-oxide fuel cells, this means understanding and controlling the complex mechanisms of ion diffusion in solid matter. Because of the unusual evolution of correlated electronic properties (frustrated magnetism and superconductivity), the layered Co-oxide family NaxCoO2 (0T2, coinciding with the equalization of all first-neighbor Na-Na distances in the structure [2]. These findings provide new insight on the subtle mechanisms controlling the Na-ion diffusion in the NaxCoO2 family and could be used for the design of related energy materials with improved functional properties. Fig. 1. Fourier difference maps of the z = 0.25 Na planes at T = 50, 320 and 450 K showing the evolution of the residual scattering density in the paths connecting the Na1 and Na2 sites (from ref.[2]).

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds