Download citation
Acta Cryst. (2014). A70, C228
Download citation
link to html
"Solid-state ionic conduction relies on essentially conflicting structural properties: long-range crystalline order, to provide structural stability (as fuel cell membranes, battery cathodes etc.); and short-range disorder, to provide smooth conduction pathways without deep local energy minima that could trap the conducting species. Materials that combine these features are generally metastable, and prone to ordering into complex modulated structured that can only be described in (3+n) dimensions using the superspace formalism. Such ordering would normally be expected to seriously compromise conduction properties. However, low-temperature modulated structures can be effective and stable precursors to high-temperature ionic conductors - and, in some cases, can coexist with regions of local disorder that actually enhance conduction. The relationship between modulated order and ionic conduction is relatively little studied, but some of our recent work points to its potential importance. This presentation will focus on two examples: the (3+3)-dimensional commensurately modulated proton conductor Ba4Nb2O9.1/3H2O; [1,2] and the (3+3)-dimensional incommensurately modulated oxide ion conductor ""Type II"" Bi2O3.xNb2O5 (for which a single-crystal neutron diffraction pattern and the refined structure are shown below). [3] The aim is to show how modulated structures can be designed and manipulated to optimise technological performance by striking a balance between stabilising the overall framework while destabilising the conduction pathways."

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds