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Candida rugosa lipase (CRL) resolves chiral aryloxy- and arylpro-
pionic acids with moderate to high enantioselectivity [1]. To
understand how CRL distinguishes between enantiomers, we
determined the X-ray crystal structure of a transition state
analog for a typical enantiomer of a chiral carboxylic acid ester,
methyl α-methoxyphenyl acetate, 1, covalently linked to CRL.
Purified CRL shows moderate enantioselectivity (E = 23)
toward this chiral acid favoring the (S)-enantiomer. To prepare
a transition state analog that mimics reaction of the fast reacting
enantiomer, we prepared inactivator (RC,RPSP)-2. An X-ray
crystal structure of CRL containing the covalently linked
transition state analog shows the phenyl ring in the hydro-
phobic tunnel of the lipase, as proposed previously based on
molecular modeling [1]. Phe344 and Ph415 crowd the region
near the substrate stereocenter, suggesting that shape of the
active site prevents binding the slow-reacting enantiomer in a
catalytically productive orientation.

Previous x-ray crystal structures of enantiomers bound to
enzymes show that their relative orientation is either an exchange
of two substituent positions or, more commonly, a mirror image
orientation [2]. Modeling will test both of these possibilities for
the slow enantiomer of 1.
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Pseudomonas aeruginosa exhibits a remarkable metabolic versa-
tility allowing it to occupy a multitude of ecological niches.
Strikingly, it is able to degrade and utilize biocidic sodium
dodecyl-sulfate (SDS), the detergent of most commercial
personal hygiene products. We identify SdsA1 of P. aeruginosa
as a secreted SDS-hydrolase that allows the bacterium to utilize
primary sulfates such as SDS as sole carbon or sulfur source.
The crystal structure of SdsA1 reveals three distinct domains.
The N-terminal catalytic domain with a binuclear Zn2+ cluster
is a new member of the metallo-β-lactamase fold family, the
central dimerization domain ensures resistance to high concen-
trations of SDS, while the C-terminal domain provides a hydro-
phobic groove, presumably to recruit long aliphatic substrates.
Crystal structures of apo-SdsA1, and complexes with a substrate-
analog and products, indicate a novel enzymatic mechanism
involving a water molecule indirectly activated by the Zn2+

cluster.
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