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An unexpected discovery in fullerene chemistry has been the
ease with which C60 units can covalently bond together to give
rise to polymerized fullerene networks with a variety of struc-
tural architectures. Such fullerene-bridged arrays display varying
dimensionality and interesting electronic (metallic behavior)
and magnetic (ferromagnetism above room temperature)
properties. The predominant C-C bridging structural motif,
encountered in photo- and pressure-polymerized neutral C60
and in the AC60 (A = K, Rb, Cs) solids arises from [2+2]
cycloaddition reactions, which result in the formation of 4-mem-
bered carbon rings, fusing together adjacent molecules and
propagating in one (1D chains) or two (2D layers) dimensions
(Fig. 1a). An alternative bridging mechanism involves the
formation of single interfullerene C-C covalent bonds, as encoun-
tered in 1D C60

3- (Na2RbC60) [1] (Fig. 1b) and 2D C60
4-

(Na4C60)3 [2] fulleride polymers. We have recently started
working on the related fulleride salt, Li4C60 and its structural
properties were probed by X-ray powder diffraction as a function
of temperature between ambient conditions and 450(C. Very
surprisingly we found that at room temperature the ground
state of Li4C60 is a two-dimensional polymer with monoclinic
crystal symmetry and an unprecedented architecture, combining
both [2+2] cycloaddition and single C-C bridging motifs [3,4]
(Fig. 1c). This structure is the first example of a fullerene polymer
with a mixed mode of interfullerene bridging and opens the way
for the synthesis and study of new C60-based 1D, 2D and 3D
polymers. Increasing the temperature leads to the disruption
of the bridging motifs and to the simultaneous formation of a
fcc monomeric phase.

Figure 1. Schematic drawing of the interfullerene C-C bridging
structural motifs in polymeric fullerides. (a) [2+2] cycload-
dition in AC60, (b) single C-C covalent bonds in Na2RbC60, and
(c) mixed bonding in Li4C60
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We present calculations of the interaction energy of C60 fullerene
molecules encapsulated in single-walled carbon nanotubes
(SWCNTs), systems known as peapods [1]. We focus on the
dependence on the molecular orientations by taking the
molecular structure fully into account. First, we approximate
the SWCNT as a homogenous cylindrical distribution of carbon
atoms, hence keeping the tube’s radius R as a single tube-char-
acteristic parameter rather than the two chiral indices n and
m [2]. For molecules aligned on the tube axis, we find three
different preferential molecular orientations for tube radii in
the range 6.5 Å < R < 8.5 Å. We also consider the possibility of
having off-centre molecular positions and provide a theoretical
description of (C60)n@SWCNT peapods as one-dimensional
systems. Then, we test our homogenous-tube approximation
by calculating the same C60-tube interaction for several actual
SWCNTs having tube radii in the same range and investigate
its validity [3]. We apply the same approximation to
(C70)n@SWCNT peapods. Again, for molecules positioned
centrally in the tube, we obtain radius-dependent preferential
orientations. ’’Lying’’ orientations (long molecular axis
coinciding with the tube axis) occur at the lower radii, higher
radii yield ’’standing’’ orientations (long molecular axis perpen-
dicular to the tube axis), consistent with experimental electron
diffraction results [4].
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