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Many structures are problematic in that, although they are well
organised in one or two dimensions, alternative relationships
are possible between adjacent columns or layers. This allows
the possibility of polytypes, stacking faults and twinning. A
prototype structure is an ideally ordered structure from which
a model of the observed intensities can be constructed and
refined, assuming definable (or refinable) relationships (R,t)
between blocks of structure. Coherence between blocks in the
evaluation of a structure factor only requires that the operator
R operating on a reciprocal lattice vector h of the prototype,
creates another such lattice vector h> = Rh. Structure factor
algebra uses refinable population and twinning parameters to
combine the structure factors of equivalent or pseudo equiv-
alent reflections of the prototype structure. This may change
the symmetry of the diffraction pattern from that of the ordered
prototype structure.

A common situation is when the prototype structure can be
related to an idealised 1:1 disordered parent structure of higher
symmetry. Alternative orderings may then be possible and
symmetry operations destroyed upon ordering the parent
structure can be used to identify possible polytypes and twin-
disorder scenarios. Examples from recently studied structures
using my program RAELS will illustrate the principals.
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Assume a one-dimensional crystal structure (or structure
projection) of m equal and independent point atomsj = 1, ...,
m with coordinates x;, 0 <x; < 1 or < %2 (for the centrosym-
metric case). Take an orthonormal parameter space of
dimension m, P[0, 1], or P"*[0, '2]™, respectively, and, due
to the atom permutability, its asymmetric part A (or half of
A™ after origin definition of centrosymmetric structures).
Describe in it the structure by a vector x = (x;, ..., x,,,) with
components to be determined [1]. Rank any set of  diffraction
amplitudes g(h,), i = 1, ..., n,g(h) = |Z; cos2llhx;|, observed
on relative scale, in descending order of g (for simplicity, all
amplitudes assumed to be different,i =1 denoting the strongest
amplitude g). - Then, from the sequence of the amplitudes
alone, i.e. from the sequence of the corresponding #,, defining
n-1 independent inequalities of the type g(h;) > g(h;,.;), one
obtains in A™ deductively either one, or a finite number p of
discrete, confined m-dimensional solution region(s) summa-
rized as L,,. Each of them is enveloped by a (hopefully) suffi-
cient number of (m-1)-dimensional “’isosurfaces” defined by
g(h;,1)/g(h;) < 1on ”absolute scale” and can be considered as
a possible approximate solution for x+Ax [2]. This principal
result holds even for n <m, though the | Ax| may become imprac-
tically large, at least in some of the directions j, for too small
n/m. Vice versa of course, |Ax|, averaged over j, usually
decreases with increasing n: |L,,,|<|L,|, and also p,, ., <
P, Forn not too large, <| Ax|> was obtained smaller than found
for the corresponding spatial resolution of a scattering density
map computed by Fourier inversion using the same n reflec-
tions with correctly signed g(h). - For p > 1, one of the p structure
models is the correct one. If two or more models remain stable
with increasing n, homometric solutions must be expected
whereas a single model, p = 1, gives proof of a unique solution
within |Ax|. - Alternatively, a similar result can also be obtained
by comparing each (or some) of n amplitudes g(h) with their
average, thus employing up to n inequalities, also on ”absolute
scale”. (Their corresponding isosurfaces appear less compli-
cated than those mentioned above.) Using optimal contrast in
the g(h), rather small solution regions may emerge from well
selected data. - Ideas for obtaining two- and three-dimensional
structures are briefly addressed in [3]. - The proposed talk shall
provide algorithms used for examples to be presented and discuss
practical aspects of this method as well as its limitations, advan-
tages and shortcomings.
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