research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Lutidine penta­aqua sulfate complexes of first-row transition metals: [M(3,5-lutidine)(H2O)5]SO4, with M = Mn, Co, Ni, and Zn

crossmark logo

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 22 March 2023; accepted 12 June 2023; online 16 June 2023)

The reactions of MnSO4·H2O, CoSO4·7H2O, NiSO4·6H2O and ZnSO4·7H2O with 3,5-lutidine (3,5-di­methyl­pyridine) yield crystals of penta­aqua­(3,5-di­methyl­pyridine-κN)manganese(II) sulfate, [Mn(C7H9N)(H2O)5]SO4, (1), penta­aqua­(3,5-di­methyl­pyridine-κN)cobalt(II) sulfate, [Co(C7H9N)(H2O)5]SO4, (2), penta­aqua­(3,5-di­methyl­pyridine-κN)nickel(II) sulfate, [Ni(C7H9N)(H2O)5]SO4, (3), and penta­aqua­(3,5-di­methyl­pyridine-κN)zinc(II) sulfate, [Zn(C7H9N)(H2O)5]SO4, (4), which were characterized by single-crystal X-ray diffraction. The four crystals are isostructural, demonstrating near identical unit-cell parameters and atomic positions. The metal atoms are all octa­hedrally coordinated, with one lutidine ligand and five water ligands. The sulfate dianion hydrogen bonds with the coordinated water mol­ecules of the dicationic metal complex salts, generating infinite three-dimensional networks.

1. Chemical context

Metal–pyridine sulfate complexes have been reported in the literature since the 1880s (Jørgensen, 1886[Jørgensen, S. M. (1886). J. Prakt. Chem. 33, 489-538.]; Reitzenstein, 1898[Reitzenstein, F. (1898). Z. Anorg. Chem. 18, 253-304.]; Manke, 2021[Manke, D. R. (2021). Bull. Hist. Chem. 46, 179-185.]), though an extensive and systematic look at the crystal structures of this class of compounds has never been undertaken. In recent years, our laboratory began looking at the structures of first-row transition-metal–pyridine sulfate complexes, first with the parent pyridine (Park et al., 2019[Park, A. M., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1888-1891.]; Pham et al., 2018[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857-861.]; Roy et al., 2018[Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263-268.]) and then with picoline ligands (Park et al., 2022[Park, A. M., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 108-110.]; Pham et al., 2019[Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568-574.]). In our efforts to examine the structural diversity of this class of compounds, we recently expanded to look at lutidine ligands. Herein we report four isostructural first-row transition-metal complexes of 3,5-lutidine.

[Scheme 1]

2. Structural commentary

The four compounds described herein are isostructural, demonstrating near identical unit-cell parameters and atomic positions (Fig. 1[link]). The asymmetric unit comprises half of the cation and half of the sulfate anion, both ions having crystallographic mirror symmetry. In the cation, the metal atom, the lutidine ligand and the O1 atom of the trans-aqua ligand lie in the mirror plane, while two independent aqua ligands are in general positions. In each structure, both methyl groups of the lutidine ligand are rotationally disordered between two mirror-related orientations. In the anion, atoms S1, O4 and O6 lie in the mirror plane, while O5 and O5ii are related by it. Reflection generates the full dicationic complex, which exhibits an octa­hedral coordination with one lutidine and five water ligands bound to the metal, as well as the full sulfate dianion.

[Figure 1]
Figure 1
The mol­ecular structures of 3,5-lutidine penta­aqua manganese sulfate (1), 3,5-lutidine penta­aqua cobalt sulfate (2), 3,5-lutidine penta­aqua nickel sulfate (3), and 3,5-lutidine penta­aqua zinc sulfate (4) showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Dashed bonds are used to show the disordered hydrogen atoms on the methyl groups. Symmetry codes: (i) x, [{3\over 2}] − y, z; (ii) x, [{1\over 2}] − y, z.

The MO3N plane formed by the three crystallographically unique water mol­ecules and the lutidine nitro­gen atom is rotated by 45.52 (4)° from the plane of the pyridine ring for Mn, 45.79 (4)° for Co, 45.93 (3)° for Ni, and 45.75 (3)° for Zn. The M—N distances (Table 1[link]) observed in the complexes are all consistent with the ionic radii for the metals (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The full sulfate dianions have three near equivalent S—O bonds (S1—O4, S1—O5 and S1—O5ii) with two metal-bound waters hydrogen bonding to each oxygen atom. There is also one slightly longer S—O bond (S1—O6) with four metal-bound waters hydrogen bonding to the oxygen. All S—O distances are listed in Table 1[link].

Table 1
Selected bond lengths (Å) for compounds (1)–(4)

Compound M—N1 S1—O4 S1—O5 S1—O6
(1) 2.227 (3) 1.462 (2) 1.4650 (17) 1.484 (2)
(2) 2.112 (3) 1.462 (3) 1.4618 (17) 1.488 (2)
(3) 2.066 (2) 1.464 (2) 1.4588 (14) 1.4895 (19)
(4) 2.0924 (19) 1.4641 (19) 1.4596 (13) 1.4886 (18)

3. Supra­molecular features

The ions in all of the compounds described are connected in an extended 3D network through hydrogen bonding. The major hydrogen bonds are between the metal–aqua complexes and the sulfate dianions (Tables 2[link]–5[link][link][link]). The extended structure packing of all compounds show ππ stacking between lutidine rings of adjacent complexes. The parameters of the ππ inter­actions are in Table 6[link]. The crystal packing of the zinc complex is shown in Fig. 2[link]. The crystal packing of the other three compounds is isostructural in nature.

Table 2
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.79 (1) 2.00 (1) 2.775 (2) 166 (3)
O2—H2A⋯O6i 0.78 (1) 2.06 (1) 2.832 (3) 172 (3)
O2—H2B⋯O6ii 0.78 (1) 2.10 (2) 2.850 (3) 162 (4)
O3—H3A⋯O5iii 0.78 (1) 1.98 (1) 2.752 (2) 177 (4)
O3—H3B⋯O4 0.78 (1) 1.99 (1) 2.748 (3) 165 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, -z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.78 (1) 2.01 (1) 2.782 (2) 173 (3)
O2—H2A⋯O6i 0.78 (1) 2.07 (1) 2.840 (3) 169 (3)
O2—H2B⋯O6ii 0.78 (1) 2.07 (2) 2.822 (3) 161 (4)
O3—H3A⋯O5iii 0.77 (1) 1.99 (1) 2.764 (2) 174 (3)
O3—H3B⋯O4 0.78 (1) 1.97 (1) 2.742 (3) 171 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, -z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.78 (1) 2.00 (1) 2.7822 (18) 174 (3)
O2—H2A⋯O6i 0.78 (1) 2.08 (1) 2.857 (2) 172 (2)
O2—H2B⋯O6ii 0.79 (1) 2.06 (1) 2.821 (2) 163 (3)
O3—H3A⋯O5iii 0.77 (1) 2.00 (1) 2.7683 (18) 173 (2)
O3—H3B⋯O4 0.77 (1) 1.98 (1) 2.745 (2) 172 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, -z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.78 (1) 2.01 (1) 2.7892 (17) 172 (3)
O2—H2A⋯O6i 0.78 (1) 2.07 (1) 2.845 (2) 173 (2)
O2—H2B⋯O6ii 0.79 (1) 2.08 (1) 2.833 (2) 162 (3)
O3—H3A⋯O5iii 0.77 (1) 1.99 (1) 2.7571 (18) 177 (2)
O3—H3B⋯O4 0.77 (1) 1.97 (1) 2.7395 (19) 172 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, -z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 6
Parameters of π–π inter­actions (Å)

  (1) (2) (3) (4)
Centroid-to-centroid 3.6461 (6) 3.6485 (6) 3.6337 (5) 3.6370 (5)
Plane-to-plane shift 0.770 (3) 0.829 (3) 0.8599 (19) 0.8290 (19)
Plane-to-centroid 3.5639 (3) 3.5532 (2) 3.53045 (15) 3.54130 (15)
[Figure 2]
Figure 2
The crystal packing of 3,5-lutidine penta­aqua zinc sulfate (4). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines and ππ inter­actions are shown as bold dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

4. Database survey

While there are many examples of metal–pyridine penta­hydrate complexes, there is only one pyridine-based penta­hydrate complex of a transition metal with a sulfate counter-ion, which is the dimer of zinc bridged by 1,2-bis­(pyridin-3-yl­methyl­ene)hydrazine (YUMVAG; Lozovan et al., 2020[Lozovan, V., Kravtsov, V. C., Coropceanu, E. B., Siminel, A. V., Kulikova, O. V., Costriucova, N. V. & Fonari, M. S. (2020). J. Solid State Chem. 286, 121312.]). The other similar structures with sulfur-based anions in the literature include a 3-carboxamide­pyridine complex of cobalt with a sulfonate counter-ion (CACFAP; Lian et al., 2010[Lian, Z., Zhao, N. & Liu, P. (2010). Z. Kristallogr. New Cryst. Struct. 225, 371-373.]), and a pyridine nickel sulfonate complex with a calixarene tetra­sulfonate counter-anion (VIWHUE: Atwood et al., 1991[Atwood, J. L., Orr, G. W., Hamada, F., Vincent, R. L., Bott, S. G. & Robinson, K. D. (1991). J. Am. Chem. Soc. 113, 2760-2761.]). The only similar 3,5-lutidine structures are a tetra­kis­(3,5-lutidine) copper sulfate complex (IWAWEJ; Bowmaker et al., 2011[Bowmaker, G. A., Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2011). Inorg. Chim. Acta, 375, 31-40.]), and a bis­(3,5-lutidine) nickel thio­sulfate dimer (BEMNIS; Pladzyk et al., 2012[Pladzyk, A., Daca, N. & Ponikiewski, L. (2012). Z. Anorg. Allg. Chem. 638, 1497-1500.]).

5. Synthesis and crystallization

A metal sulfate (44 mg of MnSO4·H2O, 44 mg of CoSO4·7H2O, 217 mg of NiSO4·6H2O, 33 mg of ZnSO4·7H2O) was dissolved in five drops of water and 2.5 mL of 3,5-lutidine. The resulting solution was heated to 338–343 K for twelve hours and allowed to cool slowly to room temperature producing single crystals suitable for X-ray diffraction. The manganese crystals formed as colorless blocks, the cobalt crystals formed as pink blocks, the nickel crystals formed as pale-green plates, and the zinc crystals formed as colorless blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The water hydrogen atoms H1, H2A, H2B, H3A, and H3B were found in difference-Fourier maps. These hydrogen atoms were refined isotropically, using DFIX restraints with O—H distances of 0.78 (1) Å. Isotopic displacement parameters were set to 1.5 Ueq of the parent oxygen atom. All other hydrogen atoms were placed in calculated positions [C—H = 0.93 Å (sp2), 0.96 Å (CH3)]. Isotropic displacement parameters were set to 1.2 Ueq of the parent aromatic carbon atoms and 1.5 Ueq of the parent methyl atoms.

Table 7
Experimental details

  (1) (2) (3) (4)
Crystal data
Chemical formula [Mn(C7H9N)(H2O)5]SO4 [Co(C7H9N)(H2O)5]SO4 [Ni(C7H9N)(H2O)5]SO4 [Zn(C7H9N)(H2O)5]SO4
Mr 348.23 352.22 352.00 358.66
Crystal system, space group Orthorhombic, Pnma Orthorhombic, Pnma Orthorhombic, Pnma Orthorhombic, Pnma
Temperature (K) 297 297 297 297
a, b, c (Å) 17.1868 (13), 7.1278 (5), 11.4447 (8) 17.1238 (10), 7.1064 (4), 11.2576 (6) 17.1196 (8), 7.0609 (3), 11.2233 (5) 17.1312 (8), 7.0826 (3), 11.2879 (5)
V3) 1402.02 (17) 1369.92 (13) 1356.67 (10) 1369.60 (11)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.13 1.44 1.62 1.99
Crystal size (mm) 0.22 × 0.08 × 0.05 0.08 × 0.08 × 0.06 0.17 × 0.04 × 0.03 0.21 × 0.13 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.585, 0.745 0.714, 0.745 0.680, 0.745 0.671, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27161, 1460, 1265 32289, 1367, 1194 36924, 1499, 1386 46710, 1516, 1414
Rint 0.074 0.070 0.049 0.042
(sin θ/λ)max−1) 0.612 0.603 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.11 0.028, 0.069, 1.12 0.023, 0.060, 1.10 0.021, 0.056, 1.12
No. of reflections 1460 1367 1499 1516
No. of parameters 128 128 128 128
No. of restraints 7 7 7 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.42 0.43, −0.29 0.44, −0.33 0.40, −0.27
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Pentaaqua(3,5-dimethylpyridine-κN)manganese(II) sulfate (1) top
Crystal data top
[Mn(C7H9N)(H2O)5]SO4Dx = 1.650 Mg m3
Mr = 348.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 7487 reflections
a = 17.1868 (13) Åθ = 3.0–25.7°
b = 7.1278 (5) ŵ = 1.13 mm1
c = 11.4447 (8) ÅT = 297 K
V = 1402.02 (17) Å3BLOCK, colourless
Z = 40.22 × 0.08 × 0.05 mm
F(000) = 724
Data collection top
Bruker D8 Venture CMOS
diffractometer
1265 reflections with I > 2σ(I)
φ and ω scansRint = 0.074
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 25.8°, θmin = 3.0°
Tmin = 0.585, Tmax = 0.745h = 2020
27161 measured reflectionsk = 88
1460 independent reflectionsl = 1313
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.6101P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1460 reflectionsΔρmax = 0.39 e Å3
128 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.38853 (3)0.7500000.19452 (4)0.02628 (16)
S10.33347 (4)0.2500000.03698 (6)0.02472 (19)
O10.35349 (17)0.7500000.0101 (2)0.0431 (6)
O20.47201 (10)0.9730 (3)0.14197 (15)0.0370 (4)
O30.30623 (11)0.5330 (3)0.23922 (17)0.0442 (4)
O40.29510 (15)0.2500000.0770 (2)0.0442 (6)
O50.31258 (11)0.0805 (2)0.10225 (15)0.0433 (4)
O60.41874 (13)0.2500000.0163 (2)0.0414 (6)
N10.44712 (15)0.7500000.3681 (2)0.0305 (6)
C10.52514 (18)0.7500000.3748 (3)0.0335 (7)
H1A0.5532730.7500000.3053760.040*
C20.56607 (18)0.7500000.4786 (3)0.0322 (7)
C30.52253 (19)0.7500000.5812 (3)0.0344 (7)
H30.5478910.7500000.6529950.041*
C40.44230 (19)0.7500000.5779 (3)0.0327 (7)
C50.40755 (19)0.7500000.4686 (3)0.0323 (7)
H50.3534920.7500000.4650140.039*
C60.6535 (2)0.7500000.4798 (4)0.0489 (10)
H6A0.6717660.6816770.5467360.073*0.5
H6B0.6721470.8768550.4835980.073*0.5
H6C0.6725910.6914670.4098990.073*0.5
C70.3933 (2)0.7500000.6867 (3)0.0500 (10)
H7A0.4200610.8165770.7475950.075*0.5
H7B0.3841420.6230700.7111400.075*0.5
H7C0.3445180.8103530.6709250.075*0.5
H10.3430 (17)0.834 (3)0.032 (2)0.054 (9)*
H2A0.4583 (16)1.057 (3)0.103 (2)0.056 (10)*
H2B0.5081 (14)0.930 (5)0.111 (3)0.084 (13)*
H3A0.2719 (12)0.549 (4)0.282 (2)0.062 (10)*
H3B0.2951 (17)0.451 (3)0.197 (2)0.062 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0239 (2)0.0297 (3)0.0253 (3)0.0000.00054 (17)0.000
S10.0223 (4)0.0241 (4)0.0278 (4)0.0000.0028 (3)0.000
O10.0624 (17)0.0320 (14)0.0347 (14)0.0000.0176 (12)0.000
O20.0330 (9)0.0403 (10)0.0378 (9)0.0031 (8)0.0016 (7)0.0063 (8)
O30.0413 (10)0.0442 (11)0.0469 (10)0.0143 (9)0.0136 (8)0.0105 (9)
O40.0490 (15)0.0410 (14)0.0425 (13)0.0000.0151 (11)0.000
O50.0548 (11)0.0305 (9)0.0447 (9)0.0012 (8)0.0186 (8)0.0054 (7)
O60.0218 (11)0.0466 (15)0.0558 (15)0.0000.0007 (10)0.000
N10.0274 (13)0.0352 (15)0.0290 (13)0.0000.0047 (11)0.000
C10.0293 (16)0.0395 (19)0.0315 (16)0.0000.0012 (13)0.000
C20.0256 (16)0.0314 (17)0.0396 (18)0.0000.0050 (13)0.000
C30.0340 (17)0.0389 (19)0.0303 (16)0.0000.0080 (13)0.000
C40.0318 (16)0.0357 (17)0.0307 (16)0.0000.0015 (13)0.000
C50.0273 (15)0.0344 (17)0.0351 (17)0.0000.0038 (13)0.000
C60.0255 (17)0.064 (3)0.057 (2)0.0000.0055 (16)0.000
C70.042 (2)0.076 (3)0.0317 (18)0.0000.0010 (15)0.000
Geometric parameters (Å, º) top
Mn1—O12.195 (2)N1—C51.336 (4)
Mn1—O2i2.2240 (17)C1—H1A0.9300
Mn1—O22.2240 (17)C1—C21.381 (5)
Mn1—O32.1575 (17)C2—C31.392 (5)
Mn1—O3i2.1575 (17)C2—C61.504 (4)
Mn1—N12.227 (3)C3—H30.9300
S1—O41.462 (2)C3—C41.379 (5)
S1—O5ii1.4650 (17)C4—C51.386 (4)
S1—O51.4650 (17)C4—C71.503 (5)
S1—O61.484 (2)C5—H50.9300
O1—H10.786 (10)C6—H6A0.9600
O1—H1i0.786 (10)C6—H6B0.9600
O2—H2A0.781 (10)C6—H6C0.9600
O2—H2B0.776 (10)C7—H7A0.9600
O3—H3A0.775 (10)C7—H7B0.9600
O3—H3B0.779 (10)C7—H7C0.9600
N1—C11.343 (4)
O1—Mn1—O2i85.24 (7)C1—N1—Mn1120.2 (2)
O1—Mn1—O285.24 (7)C5—N1—Mn1122.5 (2)
O1—Mn1—N1169.05 (11)C5—N1—C1117.3 (3)
O2i—Mn1—O291.24 (10)N1—C1—H1A118.0
O2i—Mn1—N187.11 (7)N1—C1—C2123.9 (3)
O2—Mn1—N187.11 (7)C2—C1—H1A118.0
O3i—Mn1—O192.76 (8)C1—C2—C3116.9 (3)
O3—Mn1—O192.76 (8)C1—C2—C6121.1 (3)
O3—Mn1—O2177.99 (7)C3—C2—C6122.0 (3)
O3i—Mn1—O288.55 (7)C2—C3—H3119.5
O3—Mn1—O2i88.55 (7)C4—C3—C2120.9 (3)
O3i—Mn1—O2i177.99 (7)C4—C3—H3119.5
O3—Mn1—O3i91.59 (11)C3—C4—C5117.1 (3)
O3—Mn1—N194.87 (7)C3—C4—C7122.5 (3)
O3i—Mn1—N194.87 (7)C5—C4—C7120.4 (3)
O4—S1—O5ii110.15 (9)N1—C5—C4123.9 (3)
O4—S1—O5110.15 (10)N1—C5—H5118.1
O4—S1—O6107.66 (15)C4—C5—H5118.1
O5—S1—O5ii111.09 (14)C2—C6—H6A109.5
O5—S1—O6108.85 (9)C2—C6—H6B109.5
O5ii—S1—O6108.86 (9)C2—C6—H6C109.5
Mn1—O1—H1i130 (2)H6A—C6—H6B109.5
Mn1—O1—H1130 (2)H6A—C6—H6C109.5
H1—O1—H1i99 (4)H6B—C6—H6C109.5
Mn1—O2—H2A120 (2)C4—C7—H7A109.5
Mn1—O2—H2B111 (3)C4—C7—H7B109.5
H2A—O2—H2B106.7 (17)C4—C7—H7C109.5
Mn1—O3—H3A123 (2)H7A—C7—H7B109.5
Mn1—O3—H3B123 (2)H7A—C7—H7C109.5
H3A—O3—H3B108.1 (17)H7B—C7—H7C109.5
Mn1—N1—C1—C2180.000 (1)C2—C3—C4—C50.000 (1)
Mn1—N1—C5—C4180.000 (1)C2—C3—C4—C7180.000 (1)
N1—C1—C2—C30.000 (1)C3—C4—C5—N10.000 (1)
N1—C1—C2—C6180.000 (1)C5—N1—C1—C20.000 (1)
C1—N1—C5—C40.000 (1)C6—C2—C3—C4180.000 (1)
C1—C2—C3—C40.000 (1)C7—C4—C5—N1180.000 (1)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5iii0.79 (1)2.00 (1)2.775 (2)166 (3)
O2—H2A···O6iii0.78 (1)2.06 (1)2.832 (3)172 (3)
O2—H2B···O6iv0.78 (1)2.10 (2)2.850 (3)162 (4)
O3—H3A···O5v0.78 (1)1.98 (1)2.752 (2)177 (4)
O3—H3B···O40.78 (1)1.99 (1)2.748 (3)165 (3)
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1/2, y+1/2, z+1/2.
Pentaaqua(3,5-dimethylpyridine-κN)cobalt(II) sulfate (2) top
Crystal data top
[Co(C7H9N)(H2O)5]SO4Dx = 1.708 Mg m3
Mr = 352.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 6866 reflections
a = 17.1238 (10) Åθ = 3.0–25.3°
b = 7.1064 (4) ŵ = 1.44 mm1
c = 11.2576 (6) ÅT = 297 K
V = 1369.92 (13) Å3BLOCK, pink
Z = 40.08 × 0.08 × 0.06 mm
F(000) = 732
Data collection top
Bruker D8 Venture CMOS
diffractometer
1194 reflections with I > 2σ(I)
φ and ω scansRint = 0.070
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 25.4°, θmin = 3.0°
Tmin = 0.714, Tmax = 0.745h = 2020
32289 measured reflectionsk = 88
1367 independent reflectionsl = 1313
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.033P)2 + 0.9563P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1367 reflectionsΔρmax = 0.43 e Å3
128 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.38970 (2)0.7500000.19737 (4)0.02337 (15)
S10.33394 (4)0.2500000.03379 (7)0.02209 (19)
O10.35093 (18)0.7500000.0198 (2)0.0394 (6)
O20.46967 (11)0.9655 (3)0.14383 (16)0.0336 (4)
O30.31132 (11)0.5387 (3)0.24411 (17)0.0384 (4)
O40.29778 (16)0.2500000.0839 (2)0.0427 (7)
O50.31138 (11)0.0802 (2)0.09856 (16)0.0406 (5)
O60.42011 (14)0.2500000.0164 (2)0.0396 (6)
N10.44535 (16)0.7500000.3648 (2)0.0251 (6)
C10.5235 (2)0.7500000.3707 (3)0.0293 (7)
H1A0.5515070.7500000.2999870.035*
C20.56474 (19)0.7500000.4765 (3)0.0279 (7)
C30.5217 (2)0.7500000.5803 (3)0.0315 (8)
H30.5473800.7500000.6530960.038*
C40.4411 (2)0.7500000.5776 (3)0.0297 (7)
C50.40575 (19)0.7500000.4670 (3)0.0268 (7)
H50.3514890.7500000.4636420.032*
C60.6528 (2)0.7500000.4759 (4)0.0439 (10)
H6A0.6716550.6885850.5461960.066*0.5
H6B0.6714520.8773370.4741200.066*0.5
H6C0.6712630.6840780.4069720.066*0.5
C70.3926 (2)0.7500000.6890 (3)0.0465 (10)
H7A0.4202700.8142620.7510280.070*0.5
H7B0.3824690.6226380.7129010.070*0.5
H7C0.3439720.8131000.6740710.070*0.5
H10.3369 (18)0.838 (3)0.016 (2)0.058 (10)*
H2A0.4543 (17)1.052 (3)0.108 (2)0.058 (11)*
H2B0.5060 (14)0.928 (5)0.108 (3)0.079 (14)*
H3A0.2753 (11)0.555 (4)0.284 (2)0.046 (9)*
H3B0.3023 (16)0.457 (3)0.201 (2)0.053 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0234 (2)0.0267 (2)0.0200 (2)0.0000.00065 (17)0.000
S10.0216 (4)0.0213 (4)0.0233 (4)0.0000.0020 (3)0.000
O10.0592 (18)0.0293 (15)0.0298 (14)0.0000.0181 (13)0.000
O20.0318 (10)0.0375 (10)0.0316 (9)0.0022 (8)0.0004 (8)0.0067 (9)
O30.0381 (11)0.0389 (11)0.0382 (10)0.0127 (9)0.0118 (9)0.0095 (9)
O40.0531 (17)0.0397 (15)0.0354 (14)0.0000.0166 (12)0.000
O50.0531 (11)0.0261 (10)0.0427 (10)0.0013 (8)0.0190 (9)0.0058 (8)
O60.0228 (12)0.0426 (15)0.0532 (16)0.0000.0015 (11)0.000
N10.0255 (14)0.0280 (15)0.0218 (13)0.0000.0028 (11)0.000
C10.0298 (18)0.0311 (18)0.0270 (17)0.0000.0007 (14)0.000
C20.0270 (17)0.0258 (17)0.0309 (18)0.0000.0047 (14)0.000
C30.0344 (19)0.036 (2)0.0245 (16)0.0000.0085 (14)0.000
C40.0341 (18)0.0292 (18)0.0258 (17)0.0000.0003 (14)0.000
C50.0248 (16)0.0290 (17)0.0266 (17)0.0000.0031 (13)0.000
C60.0238 (19)0.060 (3)0.048 (2)0.0000.0031 (16)0.000
C70.043 (2)0.070 (3)0.0268 (19)0.0000.0016 (17)0.000
Geometric parameters (Å, º) top
Co1—O12.106 (3)N1—C51.335 (4)
Co1—O22.1408 (18)C1—H1A0.9300
Co1—O2i2.1408 (18)C1—C21.384 (5)
Co1—O32.0813 (18)C2—C31.382 (5)
Co1—O3i2.0813 (18)C2—C61.507 (5)
Co1—N12.112 (3)C3—H30.9300
S1—O41.462 (3)C3—C41.380 (5)
S1—O5ii1.4618 (17)C4—C51.385 (5)
S1—O51.4618 (17)C4—C71.504 (5)
S1—O61.488 (2)C5—H50.9300
O1—H1i0.778 (10)C6—H6A0.9600
O1—H10.778 (10)C6—H6B0.9600
O2—H2A0.782 (10)C6—H6C0.9600
O2—H2B0.784 (10)C7—H7A0.9600
O3—H3A0.774 (10)C7—H7B0.9600
O3—H3B0.776 (10)C7—H7C0.9600
N1—C11.339 (4)
O1—Co1—O2i86.24 (8)C1—N1—Co1119.7 (2)
O1—Co1—O286.24 (8)C5—N1—Co1122.7 (2)
O1—Co1—N1171.55 (11)C5—N1—C1117.7 (3)
O2—Co1—O2i91.32 (11)N1—C1—H1A118.2
O3—Co1—O192.10 (8)N1—C1—C2123.6 (3)
O3i—Co1—O192.10 (8)C2—C1—H1A118.2
O3i—Co1—O288.15 (8)C1—C2—C6120.5 (3)
O3—Co1—O2i88.15 (8)C3—C2—C1117.1 (3)
O3i—Co1—O2i178.29 (8)C3—C2—C6122.5 (3)
O3—Co1—O2178.29 (8)C2—C3—H3119.5
O3—Co1—O3i92.32 (11)C4—C3—C2121.0 (3)
O3i—Co1—N193.74 (8)C4—C3—H3119.5
O3—Co1—N193.74 (8)C3—C4—C5117.2 (3)
N1—Co1—O287.86 (7)C3—C4—C7122.3 (3)
N1—Co1—O2i87.86 (7)C5—C4—C7120.5 (3)
O4—S1—O6107.51 (16)N1—C5—C4123.6 (3)
O5ii—S1—O4109.87 (10)N1—C5—H5118.2
O5—S1—O4109.87 (10)C4—C5—H5118.2
O5ii—S1—O5111.27 (14)C2—C6—H6A109.5
O5ii—S1—O6109.12 (10)C2—C6—H6B109.5
O5—S1—O6109.12 (10)C2—C6—H6C109.5
Co1—O1—H1126 (2)H6A—C6—H6B109.5
Co1—O1—H1i126 (2)H6A—C6—H6C109.5
H1—O1—H1i106 (5)H6B—C6—H6C109.5
Co1—O2—H2A120 (2)C4—C7—H7A109.5
Co1—O2—H2B114 (3)C4—C7—H7B109.5
H2A—O2—H2B105.7 (16)C4—C7—H7C109.5
Co1—O3—H3A124 (2)H7A—C7—H7B109.5
Co1—O3—H3B121 (2)H7A—C7—H7C109.5
H3A—O3—H3B108.7 (17)H7B—C7—H7C109.5
Co1—N1—C1—C2180.000 (1)C2—C3—C4—C50.000 (1)
Co1—N1—C5—C4180.000 (1)C2—C3—C4—C7180.000 (1)
N1—C1—C2—C30.000 (1)C3—C4—C5—N10.000 (1)
N1—C1—C2—C6180.000 (1)C5—N1—C1—C20.000 (1)
C1—N1—C5—C40.000 (1)C6—C2—C3—C4180.000 (1)
C1—C2—C3—C40.000 (1)C7—C4—C5—N1180.000 (1)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5iii0.78 (1)2.01 (1)2.782 (2)173 (3)
O2—H2A···O6iii0.78 (1)2.07 (1)2.840 (3)169 (3)
O2—H2B···O6iv0.78 (1)2.07 (2)2.822 (3)161 (4)
O3—H3A···O5v0.77 (1)1.99 (1)2.764 (2)174 (3)
O3—H3B···O40.78 (1)1.97 (1)2.742 (3)171 (3)
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1/2, y+1/2, z+1/2.
Pentaaqua(3,5-dimethylpyridine-κN)nickel(II) sulfate (3) top
Crystal data top
[Ni(C7H9N)(H2O)5]SO4Dx = 1.723 Mg m3
Mr = 352.00Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9899 reflections
a = 17.1196 (8) Åθ = 3.0–26.3°
b = 7.0609 (3) ŵ = 1.62 mm1
c = 11.2233 (5) ÅT = 297 K
V = 1356.67 (10) Å3BLOCK, green
Z = 40.17 × 0.04 × 0.03 mm
F(000) = 736
Data collection top
Bruker D8 Venture CMOS
diffractometer
1386 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 26.4°, θmin = 3.6°
Tmin = 0.680, Tmax = 0.745h = 2120
36924 measured reflectionsk = 88
1499 independent reflectionsl = 1414
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.6821P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1499 reflectionsΔρmax = 0.44 e Å3
128 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.39091 (2)0.7500000.19852 (3)0.02146 (11)
S10.33343 (3)0.2500000.03397 (5)0.02160 (14)
O10.35007 (14)0.7500000.02346 (18)0.0384 (5)
O20.46878 (7)0.9627 (2)0.14536 (12)0.0309 (3)
O30.31406 (8)0.5401 (2)0.24601 (12)0.0354 (3)
O40.29830 (12)0.2500000.08496 (18)0.0424 (5)
O50.31029 (8)0.0794 (2)0.09827 (12)0.0410 (3)
O60.41976 (10)0.2500000.01750 (19)0.0394 (5)
N10.44466 (12)0.7500000.36335 (17)0.0241 (4)
C10.52308 (14)0.7500000.3692 (2)0.0277 (5)
H1A0.5511050.7500000.2981810.033*
C20.56433 (14)0.7500000.4753 (2)0.0272 (5)
C30.52130 (15)0.7500000.5799 (2)0.0304 (6)
H30.5469920.7500000.6528780.036*
C40.44033 (15)0.7500000.5768 (2)0.0282 (5)
C50.40464 (14)0.7500000.4658 (2)0.0260 (5)
H50.3503570.7500000.4624500.031*
C60.65243 (15)0.7500000.4748 (3)0.0409 (7)
H6A0.6712770.6868570.5449000.061*0.5
H6B0.6711200.8781800.4740310.061*0.5
H6C0.6709660.6849630.4052260.061*0.5
C70.39189 (17)0.7500000.6886 (2)0.0429 (7)
H7A0.4188800.8184720.7500010.064*0.5
H7B0.3833460.6219180.7142040.064*0.5
H7C0.3425290.8096100.6730850.064*0.5
H10.3354 (14)0.840 (3)0.011 (2)0.057 (8)*
H2A0.4540 (12)1.048 (2)0.1067 (18)0.045 (7)*
H2B0.5056 (10)0.923 (3)0.1115 (19)0.062 (9)*
H3A0.2777 (9)0.557 (3)0.2854 (16)0.041 (6)*
H3B0.3050 (12)0.460 (3)0.2012 (16)0.048 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02095 (16)0.02450 (18)0.01894 (17)0.0000.00045 (11)0.000
S10.0213 (3)0.0206 (3)0.0229 (3)0.0000.0023 (2)0.000
O10.0564 (13)0.0289 (11)0.0300 (10)0.0000.0187 (9)0.000
O20.0301 (7)0.0325 (7)0.0300 (7)0.0018 (6)0.0016 (5)0.0060 (6)
O30.0348 (7)0.0370 (8)0.0343 (7)0.0105 (6)0.0108 (6)0.0078 (7)
O40.0527 (12)0.0386 (12)0.0357 (11)0.0000.0161 (9)0.000
O50.0544 (8)0.0269 (7)0.0417 (8)0.0008 (6)0.0201 (6)0.0060 (6)
O60.0232 (9)0.0435 (12)0.0515 (12)0.0000.0003 (8)0.000
N10.0243 (9)0.0260 (11)0.0221 (10)0.0000.0029 (8)0.000
C10.0252 (11)0.0302 (14)0.0277 (13)0.0000.0008 (10)0.000
C20.0244 (12)0.0273 (13)0.0299 (13)0.0000.0044 (10)0.000
C30.0330 (13)0.0339 (14)0.0242 (12)0.0000.0086 (10)0.000
C40.0323 (12)0.0280 (13)0.0243 (12)0.0000.0004 (10)0.000
C50.0251 (11)0.0271 (13)0.0258 (12)0.0000.0022 (9)0.000
C60.0219 (12)0.0562 (19)0.0444 (17)0.0000.0065 (11)0.000
C70.0392 (15)0.064 (2)0.0251 (14)0.0000.0012 (11)0.000
Geometric parameters (Å, º) top
Ni1—O12.0855 (19)N1—C51.339 (3)
Ni1—O22.0949 (13)C1—H1A0.9300
Ni1—O2i2.0949 (13)C1—C21.384 (3)
Ni1—O32.0522 (13)C2—C31.386 (4)
Ni1—O3i2.0522 (13)C2—C61.508 (3)
Ni1—N12.066 (2)C3—H30.9300
S1—O41.464 (2)C3—C41.387 (4)
S1—O5ii1.4588 (14)C4—C51.387 (3)
S1—O51.4588 (14)C4—C71.505 (4)
S1—O61.4895 (19)C5—H50.9300
O1—H1i0.782 (10)C6—H6A0.9600
O1—H10.782 (10)C6—H6B0.9600
O2—H2A0.782 (9)C6—H6C0.9600
O2—H2B0.787 (9)C7—H7A0.9600
O3—H3A0.773 (9)C7—H7B0.9600
O3—H3B0.774 (9)C7—H7C0.9600
N1—C11.344 (3)
O1—Ni1—O2i86.85 (6)C1—N1—Ni1119.23 (17)
O1—Ni1—O286.85 (6)C5—N1—Ni1122.77 (16)
O2i—Ni1—O291.60 (8)C5—N1—C1118.0 (2)
O3i—Ni1—O191.70 (6)N1—C1—H1A118.3
O3—Ni1—O191.70 (6)N1—C1—C2123.4 (2)
O3i—Ni1—O287.95 (6)C2—C1—H1A118.3
O3—Ni1—O2178.51 (6)C1—C2—C3117.2 (2)
O3—Ni1—O2i87.95 (6)C1—C2—C6120.5 (2)
O3i—Ni1—O2i178.51 (6)C3—C2—C6122.3 (2)
O3—Ni1—O3i92.46 (8)C2—C3—H3119.7
O3i—Ni1—N193.04 (6)C2—C3—C4120.7 (2)
O3—Ni1—N193.04 (6)C4—C3—H3119.7
N1—Ni1—O1173.14 (9)C3—C4—C5117.6 (2)
N1—Ni1—O288.38 (5)C3—C4—C7122.0 (2)
N1—Ni1—O2i88.37 (5)C5—C4—C7120.4 (2)
O4—S1—O6107.12 (13)N1—C5—C4123.1 (2)
O5ii—S1—O4109.84 (8)N1—C5—H5118.5
O5—S1—O4109.85 (8)C4—C5—H5118.5
O5ii—S1—O5111.30 (11)C2—C6—H6A109.5
O5—S1—O6109.32 (8)C2—C6—H6B109.5
O5ii—S1—O6109.32 (8)C2—C6—H6C109.5
Ni1—O1—H1124.8 (19)H6A—C6—H6B109.5
Ni1—O1—H1i124.8 (19)H6A—C6—H6C109.5
H1—O1—H1i108 (4)H6B—C6—H6C109.5
Ni1—O2—H2A120.2 (17)C4—C7—H7A109.5
Ni1—O2—H2B113.1 (19)C4—C7—H7B109.5
H2A—O2—H2B105.3 (15)C4—C7—H7C109.5
Ni1—O3—H3A123.6 (16)H7A—C7—H7B109.5
Ni1—O3—H3B119.3 (16)H7A—C7—H7C109.5
H3A—O3—H3B108.9 (15)H7B—C7—H7C109.5
Ni1—N1—C1—C2180.000 (1)C2—C3—C4—C50.000 (1)
Ni1—N1—C5—C4180.000 (1)C2—C3—C4—C7180.000 (1)
N1—C1—C2—C30.000 (1)C3—C4—C5—N10.000 (1)
N1—C1—C2—C6180.000 (1)C5—N1—C1—C20.000 (1)
C1—N1—C5—C40.000 (1)C6—C2—C3—C4180.000 (1)
C1—C2—C3—C40.000 (1)C7—C4—C5—N1180.000 (1)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5iii0.78 (1)2.00 (1)2.7822 (18)174 (3)
O2—H2A···O6iii0.78 (1)2.08 (1)2.857 (2)172 (2)
O2—H2B···O6iv0.79 (1)2.06 (1)2.821 (2)163 (3)
O3—H3A···O5v0.77 (1)2.00 (1)2.7683 (18)173 (2)
O3—H3B···O40.77 (1)1.98 (1)2.745 (2)172 (2)
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1/2, y+1/2, z+1/2.
Pentaaqua(3,5-dimethylpyridine-κN)zinc(II) sulfate (4) top
Crystal data top
[Zn(C7H9N)(H2O)5]SO4Dx = 1.739 Mg m3
Mr = 358.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9907 reflections
a = 17.1312 (8) Åθ = 3.0–26.1°
b = 7.0826 (3) ŵ = 1.99 mm1
c = 11.2879 (5) ÅT = 297 K
V = 1369.60 (11) Å3BLOCK, colourless
Z = 40.21 × 0.13 × 0.1 mm
F(000) = 744
Data collection top
Bruker D8 Venture CMOS
diffractometer
1414 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 26.4°, θmin = 3.0°
Tmin = 0.671, Tmax = 0.745h = 2121
46710 measured reflectionsk = 88
1516 independent reflectionsl = 1414
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.6476P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1516 reflectionsΔρmax = 0.40 e Å3
128 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.38941 (2)0.7500000.20029 (2)0.02445 (10)
S10.33349 (3)0.2500000.03485 (5)0.02238 (13)
O10.35283 (14)0.7500000.02014 (17)0.0411 (5)
O20.46998 (8)0.9672 (2)0.14481 (11)0.0334 (3)
O30.31084 (8)0.5381 (2)0.24347 (13)0.0393 (3)
O40.29751 (12)0.2500000.08280 (17)0.0435 (5)
O50.31108 (8)0.07969 (19)0.09923 (12)0.0418 (3)
O60.41959 (10)0.2500000.01709 (19)0.0403 (5)
N10.44544 (12)0.7500000.36501 (17)0.0258 (4)
C10.52356 (14)0.7500000.3709 (2)0.0292 (5)
H1A0.5515190.7500000.3002580.035*
C20.56501 (14)0.7500000.4762 (2)0.0296 (5)
C30.52173 (15)0.7500000.5806 (2)0.0314 (5)
H30.5473670.7500000.6532420.038*
C40.44114 (15)0.7500000.5775 (2)0.0290 (5)
C50.40543 (14)0.7500000.4668 (2)0.0273 (5)
H50.3511910.7500000.4633270.033*
C60.65285 (15)0.7500000.4765 (3)0.0440 (7)
H6A0.6714490.6819070.5443870.066*0.5
H6B0.6715270.8776980.4796100.066*0.5
H6C0.6716160.6903960.4056080.066*0.5
C70.39253 (17)0.7500000.6883 (2)0.0438 (7)
H7A0.4196050.8170810.7497030.066*0.5
H7B0.3834550.6222620.7131590.066*0.5
H7C0.3434760.8106560.6727440.066*0.5
H10.3379 (13)0.836 (2)0.0171 (18)0.052 (7)*
H2A0.4540 (12)1.049 (3)0.1049 (18)0.050 (7)*
H2B0.5065 (11)0.928 (4)0.1108 (19)0.068 (9)*
H3A0.2758 (10)0.550 (3)0.2857 (16)0.050 (7)*
H3B0.3024 (13)0.458 (3)0.1986 (16)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02442 (15)0.02788 (16)0.02103 (15)0.0000.00072 (10)0.000
S10.0220 (3)0.0216 (3)0.0235 (3)0.0000.0025 (2)0.000
O10.0616 (13)0.0301 (11)0.0317 (10)0.0000.0188 (9)0.000
O20.0320 (7)0.0367 (7)0.0314 (6)0.0012 (6)0.0013 (5)0.0063 (6)
O30.0387 (7)0.0406 (8)0.0387 (7)0.0129 (6)0.0121 (6)0.0103 (7)
O40.0544 (12)0.0396 (11)0.0366 (10)0.0000.0167 (9)0.000
O50.0541 (8)0.0274 (7)0.0438 (7)0.0002 (6)0.0201 (6)0.0064 (6)
O60.0229 (9)0.0446 (11)0.0533 (12)0.0000.0002 (8)0.000
N10.0275 (10)0.0274 (10)0.0226 (9)0.0000.0034 (8)0.000
C10.0259 (12)0.0339 (13)0.0278 (12)0.0000.0004 (9)0.000
C20.0265 (12)0.0284 (12)0.0340 (13)0.0000.0046 (10)0.000
C30.0331 (13)0.0351 (14)0.0259 (12)0.0000.0085 (10)0.000
C40.0318 (12)0.0310 (13)0.0242 (11)0.0000.0001 (10)0.000
C50.0237 (11)0.0304 (13)0.0277 (12)0.0000.0018 (9)0.000
C60.0236 (13)0.0580 (19)0.0504 (17)0.0000.0049 (11)0.000
C70.0399 (15)0.066 (2)0.0251 (13)0.0000.0028 (11)0.000
Geometric parameters (Å, º) top
Zn1—O12.1279 (19)N1—C51.337 (3)
Zn1—O22.1598 (13)C1—H1A0.9300
Zn1—O2i2.1598 (13)C1—C21.385 (3)
Zn1—O32.0742 (13)C2—C31.392 (4)
Zn1—O3i2.0742 (13)C2—C61.505 (3)
Zn1—N12.0924 (19)C3—H30.9300
S1—O41.4641 (19)C3—C41.381 (4)
S1—O5ii1.4596 (13)C4—C51.392 (3)
S1—O51.4596 (13)C4—C71.502 (3)
S1—O61.4886 (18)C5—H50.9300
O1—H1i0.784 (10)C6—H6A0.9600
O1—H10.784 (10)C6—H6B0.9600
O2—H2A0.784 (9)C6—H6C0.9600
O2—H2B0.785 (9)C7—H7A0.9600
O3—H3A0.771 (9)C7—H7B0.9600
O3—H3B0.773 (9)C7—H7C0.9600
N1—C11.340 (3)
O1—Zn1—O2i84.90 (6)C1—N1—Zn1120.14 (16)
O1—Zn1—O284.90 (6)C5—N1—Zn1121.87 (16)
O2i—Zn1—O290.87 (8)C5—N1—C1118.0 (2)
O3i—Zn1—O191.92 (6)N1—C1—H1A118.2
O3—Zn1—O191.92 (6)N1—C1—C2123.7 (2)
O3i—Zn1—O288.13 (6)C2—C1—H1A118.2
O3—Zn1—O2176.74 (5)C1—C2—C3117.0 (2)
O3—Zn1—O2i88.13 (6)C1—C2—C6120.9 (2)
O3i—Zn1—O2i176.74 (5)C3—C2—C6122.1 (2)
O3—Zn1—O3i92.71 (8)C2—C3—H3119.6
O3i—Zn1—N195.10 (6)C4—C3—C2120.7 (2)
O3—Zn1—N195.10 (6)C4—C3—H3119.6
N1—Zn1—O1169.82 (9)C3—C4—C5117.5 (2)
N1—Zn1—O287.97 (5)C3—C4—C7122.2 (2)
N1—Zn1—O2i87.97 (5)C5—C4—C7120.3 (2)
O4—S1—O6107.16 (12)N1—C5—C4123.1 (2)
O5ii—S1—O4109.93 (8)N1—C5—H5118.4
O5—S1—O4109.93 (8)C4—C5—H5118.4
O5ii—S1—O5111.46 (11)C2—C6—H6A109.5
O5—S1—O6109.12 (7)C2—C6—H6B109.5
O5ii—S1—O6109.12 (7)C2—C6—H6C109.5
Zn1—O1—H1127.5 (18)H6A—C6—H6B109.5
Zn1—O1—H1i127.5 (18)H6A—C6—H6C109.5
H1—O1—H1i102 (4)H6B—C6—H6C109.5
Zn1—O2—H2A118.1 (17)C4—C7—H7A109.5
Zn1—O2—H2B114 (2)C4—C7—H7B109.5
H2A—O2—H2B105.0 (14)C4—C7—H7C109.5
Zn1—O3—H3A125.1 (17)H7A—C7—H7B109.5
Zn1—O3—H3B119.8 (16)H7A—C7—H7C109.5
H3A—O3—H3B109.6 (16)H7B—C7—H7C109.5
Zn1—N1—C1—C2180.000 (1)C2—C3—C4—C50.000 (1)
Zn1—N1—C5—C4180.000 (1)C2—C3—C4—C7180.000 (1)
N1—C1—C2—C30.000 (1)C3—C4—C5—N10.000 (1)
N1—C1—C2—C6180.000 (1)C5—N1—C1—C20.000 (1)
C1—N1—C5—C40.000 (1)C6—C2—C3—C4180.000 (1)
C1—C2—C3—C40.000 (1)C7—C4—C5—N1180.000 (1)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5iii0.78 (1)2.01 (1)2.7892 (17)172 (3)
O2—H2A···O6iii0.78 (1)2.07 (1)2.845 (2)173 (2)
O2—H2B···O6iv0.79 (1)2.08 (1)2.833 (2)162 (3)
O3—H3A···O5v0.77 (1)1.99 (1)2.7571 (18)177 (2)
O3—H3B···O40.77 (1)1.97 (1)2.7395 (19)172 (2)
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1/2, y+1/2, z+1/2.
Selected bond lengths (Å) for compounds (1)–(4) top
CompoundM—N1S1—O4S1—O5S1—O6
(1)2.227 (3)1.462 (2)1.4650 (17)1.484 (2)
(2)2.112 (3)1.462 (3)1.4618 (17)1.488 (2)
(3)2.066 (2)1.464 (2)1.4588 (14)1.4895 (19)
(4)2.0924 (19)1.4641 (19)1.4596 (13)1.4886 (18)
Parameters of ππ interactions (Å) top
(1)(2)(3)(4)
Centroid-to-centroid3.6461 (6)3.6485 (6)3.6337 (5)3.6370 (5)
Plane-to-plane shift0.770 (3)0.829 (3)0.8599 (19)0.8290 (19)
Plane-to-centroid3.5639 (3)3.5532 (2)3.53045 (15)3.54130 (15)
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationAtwood, J. L., Orr, G. W., Hamada, F., Vincent, R. L., Bott, S. G. & Robinson, K. D. (1991). J. Am. Chem. Soc. 113, 2760–2761.  CSD CrossRef CAS Web of Science Google Scholar
First citationBowmaker, G. A., Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2011). Inorg. Chim. Acta, 375, 31–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJørgensen, S. M. (1886). J. Prakt. Chem. 33, 489–538.  Google Scholar
First citationLian, Z., Zhao, N. & Liu, P. (2010). Z. Kristallogr. New Cryst. Struct. 225, 371–373.  Web of Science CrossRef CAS Google Scholar
First citationLozovan, V., Kravtsov, V. C., Coropceanu, E. B., Siminel, A. V., Kulikova, O. V., Costriucova, N. V. & Fonari, M. S. (2020). J. Solid State Chem. 286, 121312.  Web of Science CSD CrossRef Google Scholar
First citationManke, D. R. (2021). Bull. Hist. Chem. 46, 179–185.  CAS Google Scholar
First citationPark, A. M., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 108–110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, A. M., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1888–1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857–861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568–574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPladzyk, A., Daca, N. & Ponikiewski, L. (2012). Z. Anorg. Allg. Chem. 638, 1497–1500.  Web of Science CSD CrossRef CAS Google Scholar
First citationReitzenstein, F. (1898). Z. Anorg. Chem. 18, 253–304.  CrossRef CAS Google Scholar
First citationRoy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263–268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds