Download citation
Download citation
link to html
Pyrazole (pz)-derived ligands can, besides exhibiting a strong coordination ability toward different metal ions, exhibit a great diversity in their coordination geometry and nuclearity, which can be achieved by varying the type and position of the pz substituents. The present study reports the synthesis and crystal structure of two binuclear complexes, namely bis­(μ-4-nitro-1H-imidazol-1-ide-5-carboxyl­ato)-κ3N1,O:N23N2:N1,O-bis­[aqua­(di­methyl­formamide-κO)copper(II)], [Cu2(C4HN3O4)2(C3H7NO)2(H2O)2], (II), and bis­(μ-4-nitro-1H-imidazol-1-ide-5-car­box­yl­ato)-κ2N1,O:N22N2:N1,O-bis­[tri­aqua­cobalt(II)] dihydrate, [Co2(C4HN3O4)2(H2O)6]·2H2O, (III). These compounds represent rare examples of metal complexes comprising 3,4-substituted pz derivatives as a bridging ligand and also the first crystal structures of transition-metal complexes with ligands derived from 4-nitro­pyrazole-3-carb­oxy­lic acid. Recently, the crystal structures of the same ligand in the neutral and mixed neutral/anionic forms have been reported. We present here the third form of this ligand, where it is present in a fully deprotonated anionic form within a salt, i.e. ammonium 4-nitro­pyrazole-3-carboxyl­ate, NH4+·C4H2N3O4, (I). Single-crystal X-ray diffraction revealed that in the present complexes, the CuII and CoII centres adopt distorted square-pyramidal and octa­hedral geometries, respectively. In both cases, the N,N′,O-coordinated pz ligand shows simultaneously chelating and bridging coordination modes, leading to the formation of a nearly planar six-membered M2N4 metallocycle. In all three crystal structures, the supra­molecular arrangement is controlled by strong hydrogen bonds which primarily engage the carboxyl­ate O atoms as acceptors, while the nitro group adopts the role of an acceptor only in structures with an increased number of donors, as is the case with CoII complex (III). The electrostatic potential, as a descriptor of reactivity, was also calculated in order to examine the changes in ligand electrostatic preferences upon coordination to metal ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619001244/yo3057sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619001244/yo3057Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619001244/yo3057IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619001244/yo3057IIIsup4.hkl
Contains datablock III

CCDC references: 1892801; 1892800; 1892799

Computing details top

For all structures, data collection: SAINT (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Ammonium 4-nitro-1H-imidazole-3-carboxylate (I) top
Crystal data top
NH4+·C4H2N3O4Dx = 1.652 Mg m3
Mr = 174.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9913 reflections
a = 6.6562 (3) Åθ = 5.9–66.2°
b = 8.3692 (4) ŵ = 0.15 mm1
c = 12.5687 (7) ÅT = 200 K
V = 700.17 (6) Å3Prism, colorless
Z = 40.3 × 0.18 × 0.15 mm
F(000) = 360
Data collection top
Bruker ApexII CCD
diffractometer
2534 reflections with I > 2σ(I)
Radiation source: Incoatec ImSRint = 0.028
phi and ω scansθmax = 33.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
k = 1212
24957 measured reflectionsl = 1919
2667 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.0759P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.36 e Å3
2667 reflectionsΔρmin = 0.24 e Å3
133 parametersAbsolute structure: Flack x determined using 1031 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.1 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21035 (16)0.42064 (13)0.56805 (9)0.0275 (2)
O20.10726 (14)0.56168 (12)0.70720 (7)0.02180 (19)
O30.13435 (19)0.87520 (15)0.60192 (10)0.0354 (3)
O40.3726 (2)1.05110 (13)0.60574 (11)0.0417 (3)
N10.73828 (18)0.66614 (15)0.64740 (10)0.0238 (2)
N20.59780 (16)0.54844 (13)0.64592 (9)0.0206 (2)
N30.3119 (2)0.91298 (14)0.61119 (9)0.0255 (2)
C10.42304 (17)0.62251 (14)0.63434 (9)0.0166 (2)
C20.45564 (19)0.78917 (14)0.62828 (10)0.0196 (2)
C30.6606 (2)0.81120 (16)0.63634 (11)0.0243 (2)
C40.23150 (17)0.52781 (13)0.63563 (9)0.0165 (2)
N40.34946 (19)0.24629 (13)0.39153 (9)0.0218 (2)
H410.255 (3)0.171 (3)0.3816 (17)0.034 (5)*
H420.473 (4)0.200 (3)0.405 (2)0.040 (6)*
H430.369 (3)0.308 (3)0.3307 (17)0.030 (5)*
H440.317 (4)0.305 (3)0.4446 (18)0.039 (6)*
H10.858 (4)0.640 (3)0.662 (2)0.048 (7)*
H30.731 (3)0.903 (3)0.6350 (18)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0263 (5)0.0275 (5)0.0287 (5)0.0087 (4)0.0062 (4)0.0119 (4)
O20.0168 (4)0.0285 (4)0.0201 (4)0.0015 (4)0.0022 (3)0.0037 (3)
O30.0298 (6)0.0369 (6)0.0395 (6)0.0120 (5)0.0020 (5)0.0040 (5)
O40.0628 (9)0.0184 (4)0.0440 (7)0.0031 (5)0.0073 (6)0.0059 (4)
N10.0156 (5)0.0278 (5)0.0280 (5)0.0032 (4)0.0017 (4)0.0024 (4)
N20.0155 (4)0.0210 (4)0.0253 (5)0.0004 (4)0.0007 (4)0.0016 (4)
N30.0366 (6)0.0200 (5)0.0198 (5)0.0068 (4)0.0034 (4)0.0016 (4)
C10.0155 (5)0.0168 (4)0.0175 (4)0.0003 (4)0.0006 (4)0.0020 (4)
C20.0220 (5)0.0169 (5)0.0200 (5)0.0001 (4)0.0002 (4)0.0004 (4)
C30.0242 (6)0.0232 (5)0.0256 (6)0.0070 (5)0.0000 (5)0.0023 (5)
C40.0150 (5)0.0176 (5)0.0170 (4)0.0000 (4)0.0006 (4)0.0005 (4)
N40.0257 (5)0.0191 (4)0.0206 (5)0.0037 (4)0.0020 (4)0.0001 (4)
Geometric parameters (Å, º) top
O1—C41.2432 (15)C1—C21.4137 (17)
O2—C41.2544 (15)C1—C41.5013 (16)
O3—N31.2287 (19)C2—C31.3802 (19)
O4—N31.2264 (16)C3—H30.90 (2)
N1—C31.3269 (19)N4—H410.90 (2)
N1—N21.3583 (16)N4—H420.92 (3)
N1—H10.85 (3)N4—H430.93 (2)
N2—C11.3261 (16)N4—H440.86 (2)
N3—C21.4267 (17)
C3—N1—N2113.19 (11)N1—C3—C2105.71 (11)
C3—N1—H1128.8 (19)N1—C3—H3125.6 (14)
N2—N1—H1117.5 (19)C2—C3—H3128.7 (14)
C1—N2—N1105.45 (11)O1—C4—O2125.33 (11)
O4—N3—O3123.64 (14)O1—C4—C1118.01 (11)
O4—N3—C2118.17 (14)O2—C4—C1116.64 (10)
O3—N3—C2118.19 (12)H41—N4—H42110 (2)
N2—C1—C2109.42 (10)H41—N4—H43112.1 (18)
N2—C1—C4119.80 (10)H42—N4—H43105 (2)
C2—C1—C4130.68 (10)H41—N4—H44110 (2)
C3—C2—C1106.23 (11)H42—N4—H44109 (2)
C3—C2—N3125.24 (12)H43—N4—H44111 (2)
C1—C2—N3128.44 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N2i0.90 (2)2.14 (2)3.0186 (16)165 (2)
N4—H42···O1ii0.92 (3)1.91 (3)2.8249 (16)173 (2)
N4—H43···O2iii0.93 (2)1.90 (2)2.8343 (14)176 (2)
N4—H44···O10.86 (2)1.96 (2)2.8123 (15)172 (2)
N1—H1···O2iv0.85 (3)1.87 (3)2.7132 (16)172 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1, z1/2; (iv) x+1, y, z.
Bis(µ-4-nitro-1H-imidazol-1-ide-5-carboxylato)-κ3N1,O:N2;κ3N2:N1,O-bis[aqua(dimethylformamide-κO)copper(II)] (II) top
Crystal data top
[Cu2(C4HN3O4)2(C3H7NO)2(H2O)2]Z = 1
Mr = 619.46F(000) = 314
Triclinic, P1Dx = 1.830 Mg m3
a = 5.0863 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8110 (9) ÅCell parameters from 7645 reflections
c = 12.7192 (14) Åθ = 4.7–66.3°
α = 83.977 (4)°µ = 1.97 mm1
β = 88.281 (3)°T = 200 K
γ = 82.743 (3)°Prism, blue
V = 562.25 (11) Å30.3 × 0.2 × 0.15 mm
Data collection top
Bruker ApexII CCD
diffractometer
3680 reflections with I > 2σ(I)
Radiation source: Incoatec ImSRint = 0.033
phi and ω scansθmax = 33.3°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
k = 1313
22093 measured reflectionsl = 1919
4331 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.3153P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4331 reflectionsΔρmax = 0.70 e Å3
175 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.78303 (3)0.36979 (2)0.43045 (2)0.01790 (6)
N10.4804 (2)0.46722 (15)0.63364 (10)0.0198 (2)
N20.6832 (2)0.39226 (14)0.58022 (10)0.0184 (2)
N30.8354 (3)0.25064 (17)0.85095 (11)0.0281 (3)
N41.2141 (3)0.22711 (16)0.17290 (11)0.0242 (3)
O11.0837 (2)0.23625 (14)0.49816 (9)0.0251 (2)
O21.1996 (3)0.09823 (15)0.65048 (10)0.0357 (3)
O31.0610 (3)0.1849 (2)0.85699 (12)0.0528 (5)
O40.6884 (3)0.26862 (17)0.92809 (10)0.0370 (3)
O50.9580 (2)0.35710 (14)0.28987 (9)0.0263 (2)
O60.5724 (3)0.17305 (15)0.41168 (13)0.0407 (4)
H620.64560.08500.40690.025 (5)*
H610.44990.16730.45530.046 (7)*
C10.8404 (3)0.29964 (17)0.64834 (11)0.0189 (3)
C20.7358 (3)0.31558 (18)0.74997 (12)0.0209 (3)
C30.5105 (3)0.42085 (18)0.73665 (12)0.0220 (3)
C41.0618 (3)0.20185 (17)0.59886 (12)0.0215 (3)
C51.0935 (3)0.23715 (19)0.26521 (12)0.0225 (3)
C61.3893 (5)0.0897 (2)0.15032 (17)0.0440 (5)
H6A1.39080.01200.21150.066*
H6B1.56930.11610.13590.066*
H6C1.32550.04860.08840.066*
C71.1880 (4)0.3550 (2)0.09044 (14)0.0363 (4)
H7A1.05160.43550.11150.054*
H7B1.13710.31910.02450.054*
H7C1.35770.39660.07980.054*
H30.392 (4)0.453 (2)0.7866 (16)0.023 (5)*
H51.107 (4)0.144 (2)0.3100 (17)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01620 (9)0.01963 (9)0.01646 (9)0.00359 (6)0.00468 (6)0.00367 (6)
N10.0194 (6)0.0212 (6)0.0175 (5)0.0035 (4)0.0045 (4)0.0046 (4)
N20.0175 (5)0.0181 (5)0.0182 (5)0.0032 (4)0.0045 (4)0.0033 (4)
N30.0314 (7)0.0310 (7)0.0191 (6)0.0053 (6)0.0015 (5)0.0013 (5)
N40.0286 (7)0.0234 (6)0.0193 (6)0.0028 (5)0.0063 (5)0.0053 (5)
O10.0200 (5)0.0312 (6)0.0213 (5)0.0079 (4)0.0040 (4)0.0036 (4)
O20.0436 (8)0.0312 (6)0.0261 (6)0.0197 (6)0.0004 (5)0.0040 (5)
O30.0398 (8)0.0818 (12)0.0272 (7)0.0284 (8)0.0054 (6)0.0035 (7)
O40.0415 (8)0.0467 (8)0.0187 (6)0.0063 (6)0.0076 (5)0.0004 (5)
O50.0257 (6)0.0288 (6)0.0214 (5)0.0066 (4)0.0079 (4)0.0029 (4)
O60.0236 (6)0.0277 (6)0.0739 (11)0.0046 (5)0.0202 (6)0.0233 (7)
C10.0183 (6)0.0184 (6)0.0191 (6)0.0017 (5)0.0025 (5)0.0030 (5)
C20.0230 (7)0.0214 (7)0.0170 (6)0.0016 (5)0.0020 (5)0.0018 (5)
C30.0217 (7)0.0247 (7)0.0181 (6)0.0023 (5)0.0042 (5)0.0029 (5)
C40.0204 (7)0.0201 (6)0.0230 (7)0.0037 (5)0.0024 (5)0.0051 (5)
C50.0228 (7)0.0244 (7)0.0194 (7)0.0001 (5)0.0044 (5)0.0028 (5)
C60.0584 (13)0.0314 (9)0.0370 (10)0.0141 (9)0.0160 (9)0.0080 (8)
C70.0520 (12)0.0328 (9)0.0208 (8)0.0032 (8)0.0099 (7)0.0003 (7)
Geometric parameters (Å, º) top
Cu1—N1i1.9637 (13)O2—C41.2231 (19)
Cu1—N21.9803 (12)O5—C51.2502 (19)
Cu1—O11.9688 (11)O6—H620.8242
Cu1—O51.9807 (11)O6—H610.8246
Cu1—O62.1868 (13)C1—C21.397 (2)
N1—C31.338 (2)C1—C41.4941 (19)
N1—N21.3571 (16)C2—C31.383 (2)
N1—Cu1i1.9637 (13)C3—H30.91 (2)
N2—C11.3357 (19)C5—H50.94 (2)
N3—O31.219 (2)C6—H6A0.9800
N3—O41.2270 (18)C6—H6B0.9800
N3—C21.430 (2)C6—H6C0.9800
N4—C51.3144 (19)C7—H7A0.9800
N4—C71.452 (2)C7—H7B0.9800
N4—C61.459 (2)C7—H7C0.9800
O1—C41.2898 (19)
N1i—Cu1—N297.51 (5)N2—C1—C2107.73 (12)
O1—Cu1—N281.12 (5)N2—C1—C4115.04 (13)
N1i—Cu1—O588.89 (5)C2—C1—C4137.06 (14)
O1—Cu1—O590.73 (5)C3—C2—C1105.61 (13)
N1i—Cu1—O1169.87 (5)C3—C2—N3123.74 (13)
N2—Cu1—O5167.70 (5)C1—C2—N3130.52 (14)
N1i—Cu1—O698.19 (6)N1—C3—C2109.24 (13)
O1—Cu1—O691.94 (6)N1—C3—H3122.5 (13)
N2—Cu1—O697.68 (6)C2—C3—H3128.2 (13)
O5—Cu1—O691.76 (6)O2—C4—O1125.08 (14)
C3—N1—N2107.73 (12)O2—C4—C1121.93 (14)
C3—N1—Cu1i127.14 (10)O1—C4—C1112.96 (13)
N2—N1—Cu1i124.82 (10)O5—C5—N4123.13 (15)
C1—N2—N1109.69 (12)O5—C5—H5122.2 (13)
C1—N2—Cu1113.22 (9)N4—C5—H5114.5 (13)
N1—N2—Cu1136.75 (10)N4—C6—H6A109.5
O3—N3—O4123.38 (15)N4—C6—H6B109.5
O3—N3—C2119.34 (14)H6A—C6—H6B109.5
O4—N3—C2117.25 (14)N4—C6—H6C109.5
C5—N4—C7121.43 (14)H6A—C6—H6C109.5
C5—N4—C6121.52 (15)H6B—C6—H6C109.5
C7—N4—C6117.00 (14)N4—C7—H7A109.5
C4—O1—Cu1116.11 (9)N4—C7—H7B109.5
C5—O5—Cu1122.22 (11)H7A—C7—H7B109.5
Cu1—O6—H62124.2N4—C7—H7C109.5
Cu1—O6—H61111.2H7A—C7—H7C109.5
H62—O6—H61107.6H7B—C7—H7C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H62···O2ii0.821.912.7064 (17)162
O6—H61···O1iii0.821.962.7043 (16)149
C7—H7B···O3iv0.982.603.574 (3)171
C3—H3···O5i0.91 (2)2.43 (2)2.8897 (19)111.5 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x1, y, z; (iv) x, y, z1.
Bis(µ-4-nitro-1H-imidazol-1-ide-5-carboxylato)-κ2N1,O:N2;κ2N2:N1,O-bis[triaquacobalt(II)] dihydrate (III) top
Crystal data top
[Co2(C4HN3O4)2(H2O)6]·2H2OF(000) = 580
Mr = 572.14Dx = 2.063 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9689 (11) ÅCell parameters from 9652 reflections
b = 6.4035 (8) Åθ = 4.8–66.5°
c = 16.4509 (19) ŵ = 1.90 mm1
β = 102.930 (2)°T = 200 K
V = 920.86 (19) Å3Prism, pink
Z = 20.25 × 0.2 × 0.2 mm
Data collection top
Bruker ApexII CCD
diffractometer
3366 reflections with I > 2σ(I)
Radiation source: Incoatec ImSRint = 0.020
phi and ωs scansθmax = 33.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
k = 99
32322 measured reflectionsl = 2525
3531 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0219P)2 + 0.4119P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.003
S = 1.07Δρmax = 0.55 e Å3
3531 reflectionsΔρmin = 0.23 e Å3
158 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0055 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.54038 (2)0.42345 (2)0.61617 (2)0.01153 (4)
N10.30153 (8)0.44370 (11)0.44295 (4)0.01216 (12)
N20.33878 (8)0.40488 (11)0.52622 (4)0.01154 (12)
N30.05351 (8)0.22978 (11)0.46872 (5)0.01379 (12)
O10.38462 (8)0.30168 (14)0.68119 (4)0.02258 (15)
O20.14273 (8)0.22062 (12)0.67655 (4)0.01982 (13)
O30.09788 (8)0.16438 (12)0.52924 (5)0.02031 (13)
O40.13543 (8)0.23438 (13)0.39720 (5)0.02273 (14)
O50.70987 (8)0.39060 (11)0.72657 (4)0.01854 (13)
H510.77000.29200.73050.031 (4)*
H520.75360.48420.75450.041 (5)*
O60.59608 (9)0.11727 (12)0.58071 (6)0.02531 (15)
H610.55280.00630.59170.083 (8)*
H620.67790.07780.59820.076 (8)*
O70.48522 (8)0.73298 (12)0.65320 (4)0.02057 (13)
H710.52040.75280.70340.044 (5)*
H720.39700.75070.64700.047 (5)*
O80.87397 (9)0.04984 (13)0.70392 (6)0.02685 (16)
H810.88730.05460.73440.038 (5)*
H820.95900.07110.68760.044 (5)*
C10.21906 (9)0.32173 (12)0.55080 (5)0.01140 (13)
C20.09860 (9)0.30611 (13)0.47940 (5)0.01174 (13)
C30.15660 (9)0.38416 (13)0.41377 (5)0.01329 (13)
C40.24662 (10)0.27626 (14)0.64224 (5)0.01460 (14)
H30.1067 (18)0.396 (2)0.3569 (10)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00962 (5)0.01590 (6)0.00893 (5)0.00178 (3)0.00177 (4)0.00088 (4)
N10.0109 (3)0.0159 (3)0.0095 (3)0.0013 (2)0.0020 (2)0.0001 (2)
N20.0102 (3)0.0151 (3)0.0094 (3)0.0011 (2)0.0025 (2)0.0006 (2)
N30.0104 (3)0.0117 (3)0.0192 (3)0.0010 (2)0.0033 (2)0.0027 (2)
O10.0138 (3)0.0402 (4)0.0127 (3)0.0068 (3)0.0009 (2)0.0077 (3)
O20.0161 (3)0.0283 (3)0.0166 (3)0.0047 (2)0.0070 (2)0.0034 (2)
O30.0159 (3)0.0224 (3)0.0251 (3)0.0037 (2)0.0099 (2)0.0008 (3)
O40.0139 (3)0.0297 (4)0.0213 (3)0.0042 (3)0.0028 (2)0.0036 (3)
O50.0167 (3)0.0218 (3)0.0147 (3)0.0012 (2)0.0018 (2)0.0004 (2)
O60.0172 (3)0.0192 (3)0.0387 (4)0.0003 (3)0.0045 (3)0.0003 (3)
O70.0186 (3)0.0268 (3)0.0172 (3)0.0016 (3)0.0059 (2)0.0049 (2)
O80.0222 (3)0.0268 (4)0.0352 (4)0.0031 (3)0.0140 (3)0.0053 (3)
C10.0098 (3)0.0130 (3)0.0117 (3)0.0009 (2)0.0030 (2)0.0004 (2)
C20.0090 (3)0.0127 (3)0.0134 (3)0.0016 (2)0.0024 (2)0.0008 (2)
C30.0113 (3)0.0163 (3)0.0118 (3)0.0016 (3)0.0015 (2)0.0003 (3)
C40.0139 (3)0.0176 (4)0.0126 (3)0.0016 (3)0.0037 (3)0.0020 (3)
Geometric parameters (Å, º) top
Co1—N1i2.0729 (7)O2—C41.2446 (10)
Co1—N22.0679 (7)O5—H510.8232
Co1—O12.0911 (7)O5—H520.8023
Co1—O52.1018 (7)O6—H610.8481
Co1—O62.1365 (8)O6—H620.7683
Co1—O72.1632 (8)O7—H710.8251
N1—C31.3364 (10)O7—H720.7830
N1—N21.3583 (10)O8—H810.8286
N1—Co1i2.0730 (7)O8—H820.8736
N2—C11.3395 (10)C1—C21.4103 (11)
N3—O31.2257 (10)C1—C41.4975 (11)
N3—O41.2402 (10)C2—C31.3919 (11)
N3—C21.4226 (10)C3—H30.945 (16)
O1—C41.2705 (10)
N2—Co1—N1i105.56 (3)C4—O1—Co1118.47 (6)
N2—Co1—O176.55 (3)Co1—O5—H51118.6
N1i—Co1—O590.47 (3)Co1—O5—H52125.9
O1—Co1—O587.56 (3)H51—O5—H52107.5
N2—Co1—O5163.76 (3)Co1—O6—H61124.4
N1i—Co1—O1176.78 (3)Co1—O6—H62117.5
O6—Co1—O7179.48 (3)H61—O6—H6295.1
N2—Co1—O688.41 (3)Co1—O7—H71111.3
N1i—Co1—O691.27 (3)Co1—O7—H72112.6
O1—Co1—O691.22 (3)H71—O7—H72104.9
O5—Co1—O688.63 (3)H81—O8—H82107.1
N2—Co1—O792.05 (3)N2—C1—C2107.05 (7)
N1i—Co1—O788.83 (3)N2—C1—C4114.66 (7)
O1—Co1—O788.66 (3)C2—C1—C4138.27 (7)
O5—Co1—O790.87 (3)C3—C2—C1105.71 (7)
C3—N1—N2108.05 (7)C3—C2—N3122.83 (7)
C3—N1—Co1i131.37 (6)C1—C2—N3131.45 (7)
N2—N1—Co1i120.57 (5)N1—C3—C2109.04 (7)
C1—N2—N1110.14 (7)N1—C3—H3122.6 (9)
C1—N2—Co1116.01 (5)C2—C3—H3128.3 (9)
N1—N2—Co1133.59 (5)O2—C4—O1123.48 (8)
O3—N3—O4123.21 (8)O2—C4—C1122.62 (8)
O3—N3—C2119.59 (7)O1—C4—C1113.89 (7)
O4—N3—C2117.20 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O80.821.912.7041 (11)162
O5—H52···O2ii0.801.992.7949 (10)179
O6—H61···O7iii0.852.172.9995 (12)164
O6—H62···O3iv0.772.583.0629 (11)123
O6—H62···O80.772.192.8716 (12)149
O7—H71···O1ii0.831.922.7488 (10)176
O7—H72···O4v0.782.303.0675 (11)168
O7—H72···O5ii0.782.633.0889 (10)119
O8—H81···O2vi0.832.112.9096 (12)161
O8—H82···O2iv0.871.952.7739 (11)157
O8—H82···O3iv0.872.613.0304 (12)111
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x, y1, z; (iv) x+1, y, z; (v) x, y+1, z+1; (vi) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds