organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1085-o1086

(3aR,4S,7R,7aS)-2-Phenyl-4-propyl-3a,4,7,7a-tetra­hydro-1H-4,7-epi­thio­iso­indole-1,3-dione 8-oxide

aDepartment of Chemistry, Niğde University, 51100 Niğde, Turkey, bDepartment of Chemistry, Atatürk University, 25240 Erzurum, Turkey, cDepartment of Chemistry, Aksaray University, 68100 Aksaray, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 23 March 2011; accepted 6 April 2011; online 13 April 2011)

In the tetra­hydro­isoindole moiety of the title compound, C17H17NO3S, the six-membered ring assumes a boat configuration and the –S=O group bridges the prow and stern of the boat. The phenyl ring is oriented at a dihedral angle of 83.2 (1)° with respect to the pyrrole ring. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. A weak C—H⋯π inter­action involving the phenyl ring is also found. The crystal studied was an inversion twin.

Related literature

For background to the thio­phenen system, see: Lert & Trindle (1971[Lert, P. W. & Trindle, C. (1971). J. Am. Chem. Soc. 93, 6392-6395.]). For the conditions of cyclo­addition reactions of thio­phene, see: Al-Omran et al. (1996[Al-Omran, F., Khalik, M. M. A., Al-Awadhi, H. & Elnagdi, M. H. (1996). Tetrahedron, 52, 11915-11928.]); Kuhn & Gollnick (1972[Kuhn, H. J. & Gollnick, K. (1972). Tetrahedron Lett., pp. 1909-1912.]); Kotsuki et al. (1978[Kotsuki, H., Kitagawa, S., Nishizawa, H. & Tokoroyama, T. (1978). J. Org. Chem., 43, 1471-1472.]); Thiemann et al. (1995[Thiemann, T., Li, Y. Q., Mataka, S. & Tashiro, M. (1995). J. Chem. Res. (M), pp. 6364-6379.]). For the biological activity of some thio­phene 1,1-dioxide derivatives, see: Thiemann et al. (2009[Thiemann, T., Tanaka, Y. & Iniesta, J. (2009). Molecules, 14, 1013-1031.]). For thio­phene s-oxides with alkyl groups at positions 2,3,4 and 5, see: Rajappa (1984[Rajappa, S. (1984). Compherensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, p. 841. New York: Pergamon Press.]). For related structures, see: Arslan & Demircan (2007[Arslan, H. & Demircan, A. (2007). Acta Chim. Slov. 54, 341-353.]); Koşar et al. (2006[Koşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4192-o4193.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO3S

  • Mr = 315.39

  • Orthorhombic, P 21 21 21

  • a = 7.7712 (3) Å

  • b = 10.8413 (3) Å

  • c = 18.9762 (4) Å

  • V = 1598.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 294 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.807, Tmax = 0.865

  • 34450 measured reflections

  • 3279 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.108

  • S = 1.08

  • 3279 reflections

  • 210 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1379 Friedel pairs

  • Flack parameter: 0.37 (9)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 (2) 2.51 (3) 3.326 (4) 144 (2)
C17—H17⋯O3ii 0.93 2.57 3.315 (3) 137
C7—H7⋯Cg1iii 0.98 2.77 3.693 (3) 157
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiophene behaves as the least reactive diene among all aromatic five-membered heterocycles; the presence of 3d orbitals on sulfur contributes to the resonance stability of the thiophene system (Lert & Trindle, 1971). Cycloaddition reactions of thiophene also have limitations therefore its 4 + 2 cycloaddition can occur under following conditions; use of highly reactive dienophiles (Thiemann et al., 1995), enhance electron density on the thiophene by having substituent at position 2 or 5 (Al-Omran et al., 1996), high reaction temperature (Kuhn & Gollnick, 1972) or use of high pressure (Kotsuki et al., 1978). However, the number of publications dealing with the chemistry of thiophene dioxide based new materials, namely, semiconductor organic transistors and light diodes first designed about 13 years ago. New data on the biological activities of some thiophene 1,1-dioxide derivatives were observed in recent years (Thiemann et al., 2009).

Thiophene s-oxides are derivatives of thiophene, which belong to an important group of five-membered heterocyclic compounds having non-aromatic character. Thiophene s-oxides with alkyl groups at positions 2,3,4 and 5 have been the subject of extensive studies in recent past (Rajappa, 1984). Owing to the unique structure combined with high reactivity, they can be used to prepare various heterocyclic systems; therefore, these compounds are useful building blocks in synthetic organic chemistry. In continuation of our research program and following our previous interest in the sytheses of fused heterocyclic compounds using furan (Arslan & Demircan, 2007; Koşar et al., 2006), it has been found that mono alkylated thiophene at position 2 will lead to an excellent building block for the synthesis of the title compound.

The title compound contains two non-planar five- and six-membered rings, which has a pyrrole (C1/N2/C3/C3a/C7a) ring (B) on one side and a propyl moiety at position 4. It also contains a phenyl (C12-C17) ring (A) bonded to the pyrrole ring (B) at position 2. The angles C4-C5-C6 [111.4 (3)°] and C5-C6-C7 [111.1 (3)°] about the double bond have an average value of 111.3 (3)°. The dihedral angles between planes A, B, C (C3a/C4/C7a C7), D (C4-C7) and E (C4/S8/C7) are as follows: A/B = 83.2 (1)°, B/C = 61.9 (1)°, C/D = 60.6 (1)°, C/E = 58.8 (1)° and D/E = 60.7 (1)°.

In the crystal, intermolecular C—H···O hydrogen bonds link the molecules to form a three-dimensional network (Table 1 and Fig. 2). There also exist a weak C—H···π interaction involving the phenyl ring A (C12-C17) (Table 1).

Related literature top

For background to the thiophenen system, see: Lert & Trindle (1971). For the conditions of cycloaddition reactions of thiophene, see: Al-Omran et al. (1996); Kuhn & Gollnick (1972); Kotsuki et al. (1978); Thiemann et al. (1995). For the biological activity of some thiophene 1,1-dioxide derivatives, see: Thiemann et al. (2009). For thiophene s-oxides with alkyl groups at positions 2,3,4 and 5, see: Rajappa (1984). For related structures, see: Arslan & Demircan (2007); Koşar et al. (2006).

Experimental top

For the preparation of the title compound, BF3.Et2O (6.1 ml, 47.75 mmol) was added slowly to a solution of 2-propylthiophene (1.00 g, 7.90 mmol) and N-phenylmaleimide (2.06 g, 11.90 mmol) in dry dichloromethane (DCM) (40 ml) under an inert atmosphere at 253 K. The reaction mixture was stirred for 10 min at 253 K, and then a solution of meta chloroperbenzoic acid (m-CPBA) (2.05 g, 11.90 mmol) in dry DCM (40 ml) was added slowly. The reaction mixture was stirred for 2 h at 253 K, and then the suspension was poured into a mixture of aqueous NaHCO3 solution (80 ml) and DCM (50 ml) and stirred at room temperature for 20 min. The organic phase was separated, and the aqueous phase was extracted with DCM (3 x 25 ml). The combined organic phase was washed with water and brine, and then dried over anhydrous MgSO4. After removal of the solvent in vacuo, the residue was chromatographed on silica gel to give the title compound as colorless crystals.

Refinement top

The H atoms H5 and H6 were located in a difference Fourier map and were freely refined. Other C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.96, 0.97 and 0.98 Å, for aromatic, methyl, methylene and methine H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The C-H···O hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
(3aR,4S,7R,7aS)-2-Phenyl-4-propyl-3a,4,7,7a-tetrahydro-1H-4,7-epithioisoindole-1,3-dione 8-oxide top
Crystal data top
C17H17NO3SF(000) = 664
Mr = 315.39Dx = 1.310 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6907 reflections
a = 7.7712 (3) Åθ = 2.2–26.4°
b = 10.8413 (3) ŵ = 0.21 mm1
c = 18.9762 (4) ÅT = 294 K
V = 1598.74 (8) Å3Block, colorless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3279 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 99
Tmin = 0.807, Tmax = 0.865k = 1313
34450 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1086P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.20 e Å3
3279 reflectionsΔρmin = 0.22 e Å3
210 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.018 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1379 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.37 (9)
Crystal data top
C17H17NO3SV = 1598.74 (8) Å3
Mr = 315.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7712 (3) ŵ = 0.21 mm1
b = 10.8413 (3) ÅT = 294 K
c = 18.9762 (4) Å0.30 × 0.25 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3279 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2686 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.865Rint = 0.088
34450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.20 e Å3
S = 1.08Δρmin = 0.22 e Å3
3279 reflectionsAbsolute structure: Flack (1983), 1379 Friedel pairs
210 parametersAbsolute structure parameter: 0.37 (9)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0424 (3)0.0571 (2)0.16742 (11)0.0742 (6)
O20.3289 (2)0.35385 (18)0.09320 (10)0.0708 (6)
O30.3050 (2)0.40176 (16)0.00144 (9)0.0633 (5)
C10.0032 (3)0.1488 (3)0.13751 (14)0.0553 (6)
N20.1690 (3)0.1987 (2)0.14224 (10)0.0528 (5)
C30.1923 (3)0.3011 (2)0.10005 (12)0.0526 (6)
C3A0.0230 (3)0.3335 (2)0.06695 (13)0.0488 (6)
H3A0.03240.33490.01550.059*
C40.0495 (3)0.4576 (2)0.09505 (13)0.0541 (6)
C50.0650 (4)0.4517 (3)0.17396 (15)0.0654 (8)
H50.003 (3)0.503 (2)0.2053 (14)0.060 (8)*
C60.1750 (4)0.3652 (3)0.19369 (15)0.0659 (8)
H60.216 (4)0.346 (3)0.2393 (16)0.083 (9)*
C70.2475 (3)0.2998 (2)0.13186 (13)0.0578 (7)
H70.34990.24980.14140.069*
C7A0.1015 (3)0.2327 (2)0.09100 (12)0.0509 (6)
H7A0.14790.18750.05050.061*
S80.28413 (8)0.43745 (6)0.07643 (3)0.0564 (2)
C90.0304 (4)0.5709 (3)0.06204 (17)0.0716 (8)
H9A0.15370.56750.06980.086*
H9B0.01130.56710.01160.086*
C100.0343 (5)0.6940 (3)0.0883 (2)0.1081 (13)
H10A0.15840.69670.08310.130*
H10B0.00810.70140.13810.130*
C110.0429 (8)0.8016 (4)0.0500 (3)0.176 (3)
H11A0.00630.87680.06750.264*
H11B0.01920.79430.00050.264*
H11C0.16500.80260.05740.264*
C120.3072 (3)0.1422 (2)0.18063 (14)0.0580 (7)
C130.3496 (4)0.1844 (3)0.24562 (15)0.0729 (9)
H130.28880.24880.26630.087*
C140.4881 (5)0.1281 (4)0.2808 (2)0.0951 (12)
H140.51970.15540.32550.114*
C150.5753 (5)0.0350 (4)0.2504 (3)0.1005 (14)
H150.66690.00100.27430.121*
C160.5321 (5)0.0070 (4)0.1856 (2)0.0974 (12)
H160.59390.07100.16510.117*
C170.3949 (4)0.0460 (3)0.15000 (16)0.0732 (8)
H170.36260.01680.10590.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0578 (11)0.0808 (14)0.0841 (14)0.0097 (11)0.0041 (10)0.0270 (12)
O20.0467 (10)0.0775 (13)0.0883 (14)0.0098 (9)0.0005 (9)0.0129 (11)
O30.0654 (12)0.0712 (12)0.0533 (10)0.0027 (10)0.0088 (9)0.0030 (9)
C10.0522 (15)0.0627 (17)0.0509 (14)0.0031 (12)0.0019 (12)0.0021 (13)
N20.0457 (11)0.0591 (12)0.0537 (12)0.0010 (9)0.0012 (9)0.0057 (10)
C30.0486 (15)0.0587 (14)0.0506 (13)0.0003 (13)0.0024 (11)0.0015 (11)
C3A0.0463 (13)0.0526 (14)0.0476 (13)0.0001 (10)0.0013 (11)0.0006 (11)
C40.0499 (14)0.0552 (15)0.0573 (15)0.0011 (12)0.0010 (12)0.0058 (12)
C50.0577 (16)0.081 (2)0.0572 (16)0.0093 (16)0.0064 (14)0.0204 (15)
C60.0559 (17)0.090 (2)0.0521 (16)0.0140 (16)0.0059 (13)0.0032 (15)
C70.0482 (15)0.0675 (16)0.0578 (15)0.0004 (12)0.0037 (12)0.0069 (13)
C7A0.0458 (13)0.0571 (14)0.0499 (14)0.0020 (11)0.0026 (11)0.0012 (11)
S80.0511 (4)0.0604 (4)0.0576 (4)0.0037 (3)0.0014 (3)0.0029 (3)
C90.0703 (18)0.0600 (17)0.084 (2)0.0091 (15)0.0010 (15)0.0013 (16)
C100.111 (3)0.0577 (19)0.156 (4)0.0059 (19)0.021 (3)0.007 (2)
C110.196 (6)0.061 (3)0.272 (7)0.023 (3)0.070 (5)0.004 (3)
C120.0467 (14)0.0694 (17)0.0579 (15)0.0037 (13)0.0035 (12)0.0137 (13)
C130.0675 (18)0.090 (2)0.0611 (17)0.0115 (17)0.0119 (14)0.0085 (15)
C140.081 (3)0.129 (3)0.075 (2)0.035 (2)0.026 (2)0.033 (2)
C150.062 (2)0.127 (4)0.112 (3)0.000 (2)0.017 (2)0.057 (3)
C160.076 (2)0.113 (3)0.103 (3)0.025 (2)0.004 (2)0.027 (2)
C170.0665 (18)0.079 (2)0.0737 (19)0.0133 (17)0.0027 (15)0.0094 (17)
Geometric parameters (Å, º) top
O1—C11.198 (3)S8—C71.848 (3)
O2—C31.213 (3)C9—C101.511 (4)
C1—C7A1.506 (3)C9—H9A0.9700
N2—C11.401 (3)C9—H9B0.9700
N2—C31.380 (3)C10—C111.500 (6)
N2—C121.435 (3)C10—H10A0.9700
C3A—C31.500 (3)C10—H10B0.9700
C3A—C41.553 (3)C11—H11A0.9600
C3A—C7A1.529 (3)C11—H11B0.9600
C3A—H3A0.9800C11—H11C0.9600
C4—C51.504 (4)C12—C131.356 (4)
C4—C91.511 (4)C12—C171.375 (4)
C5—H50.95 (3)C13—C141.406 (5)
C6—C51.323 (5)C13—H130.9300
C6—H60.95 (3)C14—H140.9300
C7—C61.482 (4)C15—C141.346 (5)
C7—C7A1.555 (3)C15—C161.353 (6)
C7—H70.9800C15—H150.9300
C7A—H7A0.9800C16—H160.9300
S8—O31.4836 (18)C17—C161.387 (4)
S8—C41.871 (3)C17—H170.9300
O1—C1—N2124.2 (2)O3—S8—C4108.56 (11)
O1—C1—C7A128.2 (2)O3—S8—C7110.62 (11)
N2—C1—C7A107.5 (2)C7—S8—C480.60 (11)
C1—N2—C12123.8 (2)C4—C9—H9A108.2
C3—N2—C1113.2 (2)C4—C9—H9B108.2
C3—N2—C12122.7 (2)C10—C9—C4116.4 (3)
O2—C3—N2123.8 (2)C10—C9—H9A108.2
O2—C3—C3A127.8 (2)C10—C9—H9B108.2
N2—C3—C3A108.4 (2)H9A—C9—H9B107.3
C3—C3A—C4112.2 (2)C9—C10—H10A108.9
C3—C3A—C7A105.22 (19)C9—C10—H10B108.9
C3—C3A—H3A110.8C11—C10—C9113.2 (3)
C4—C3A—H3A110.8C11—C10—H10A108.9
C7A—C3A—C4106.71 (19)C11—C10—H10B108.9
C7A—C3A—H3A110.8H10A—C10—H10B107.7
C3A—C4—S8100.79 (16)C10—C11—H11A109.5
C5—C4—S896.01 (18)C10—C11—H11B109.5
C5—C4—C3A109.5 (2)C10—C11—H11C109.5
C5—C4—C9118.7 (2)H11A—C11—H11B109.5
C9—C4—S8114.65 (19)H11A—C11—H11C109.5
C9—C4—C3A114.4 (2)H11B—C11—H11C109.5
C4—C5—H5124.0 (16)C13—C12—N2120.0 (3)
C6—C5—C4111.4 (3)C13—C12—C17121.3 (3)
C6—C5—H5124.7 (15)C17—C12—N2118.7 (2)
C5—C6—C7111.1 (3)C12—C13—C14118.2 (3)
C5—C6—H6129.2 (19)C12—C13—H13120.9
C7—C6—H6119.5 (19)C14—C13—H13120.9
S8—C7—H7115.3C13—C14—H14119.8
C6—C7—S897.05 (19)C15—C14—C13120.4 (4)
C6—C7—C7A110.0 (2)C15—C14—H14119.8
C6—C7—H7115.3C14—C15—C16121.2 (4)
C7A—C7—S8101.92 (16)C14—C15—H15119.4
C7A—C7—H7115.3C16—C15—H15119.4
C1—C7A—C3A105.4 (2)C15—C16—C17119.6 (4)
C1—C7A—C7112.6 (2)C15—C16—H16120.2
C1—C7A—H7A110.9C17—C16—H16120.2
C3A—C7A—C7106.0 (2)C12—C17—C16119.3 (3)
C3A—C7A—H7A110.9C12—C17—H17120.3
C7—C7A—H7A110.9C16—C17—H17120.3
O1—C1—C7A—C3A179.5 (3)C3A—C4—C5—C662.6 (3)
O1—C1—C7A—C765.4 (4)C9—C4—C5—C6163.5 (3)
N2—C1—C7A—C3A2.2 (3)S8—C4—C9—C1065.0 (3)
N2—C1—C7A—C7112.9 (2)C3A—C4—C9—C10179.3 (3)
C3—N2—C1—O1176.9 (3)C5—C4—C9—C1047.5 (4)
C3—N2—C1—C7A4.8 (3)C7—C6—C5—C40.7 (3)
C12—N2—C1—O13.5 (4)S8—C7—C6—C542.9 (3)
C12—N2—C1—C7A178.1 (2)C7A—C7—C6—C562.5 (3)
C1—N2—C3—O2175.5 (2)S8—C7—C7A—C1156.02 (18)
C1—N2—C3—C3A5.3 (3)S8—C7—C7A—C3A41.3 (2)
C12—N2—C3—O22.1 (4)C6—C7—C7A—C153.9 (3)
C12—N2—C3—C3A178.8 (2)C6—C7—C7A—C3A60.8 (3)
C1—N2—C12—C13100.8 (3)O3—S8—C4—C3A51.85 (18)
C1—N2—C12—C1779.6 (3)O3—S8—C4—C5163.06 (17)
C3—N2—C12—C1386.5 (3)O3—S8—C4—C971.5 (2)
C3—N2—C12—C1793.1 (3)C7—S8—C4—C3A56.87 (16)
C4—C3A—C3—O267.0 (3)C7—S8—C4—C554.33 (18)
C4—C3A—C3—N2112.1 (2)C7—S8—C4—C9179.8 (2)
C7A—C3A—C3—O2177.3 (2)O3—S8—C7—C6161.81 (16)
C7A—C3A—C3—N23.5 (3)C4—S8—C7—C655.41 (17)
C3—C3A—C4—S8156.84 (17)O3—S8—C7—C7A49.62 (19)
C3—C3A—C4—C556.4 (3)C4—S8—C7—C7A56.78 (16)
C3—C3A—C4—C979.6 (3)C4—C9—C10—C11176.4 (4)
C7A—C3A—C4—S842.1 (2)N2—C12—C13—C14178.7 (3)
C7A—C3A—C4—C558.3 (3)C17—C12—C13—C140.9 (4)
C7A—C3A—C4—C9165.7 (2)N2—C12—C17—C16178.1 (3)
C3—C3A—C7A—C10.7 (3)C13—C12—C17—C161.5 (4)
C3—C3A—C7A—C7120.3 (2)C12—C13—C14—C150.0 (5)
C4—C3A—C7A—C1118.6 (2)C16—C15—C14—C130.2 (6)
C4—C3A—C7A—C71.0 (3)C14—C15—C16—C170.4 (6)
S8—C4—C5—C641.1 (3)C12—C17—C16—C151.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.95 (2)2.51 (3)3.326 (4)144 (2)
C17—H17···O3ii0.932.573.315 (3)137
C7—H7···Cg1iii0.982.773.693 (3)157
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H17NO3S
Mr315.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)7.7712 (3), 10.8413 (3), 18.9762 (4)
V3)1598.74 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.807, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
34450, 3279, 2686
Rint0.088
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 1.08
No. of reflections3279
No. of parameters210
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22
Absolute structureFlack (1983), 1379 Friedel pairs
Absolute structure parameter0.37 (9)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.95 (2)2.51 (3)3.326 (4)144 (2)
C17—H17···O3ii0.932.573.315 (3)137
C7—H7···Cg1iii0.982.773.693 (3)157
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1, y, z.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund. We thank The Scientific & Technological Research Council of Turkey (TUBITAK) for financial support of this work (PN: 107T831).

References

First citationAl-Omran, F., Khalik, M. M. A., Al-Awadhi, H. & Elnagdi, M. H. (1996). Tetrahedron, 52, 11915–11928.  CAS Google Scholar
First citationArslan, H. & Demircan, A. (2007). Acta Chim. Slov. 54, 341–353.  CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4192–o4193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKotsuki, H., Kitagawa, S., Nishizawa, H. & Tokoroyama, T. (1978). J. Org. Chem., 43, 1471–1472.  CrossRef CAS Google Scholar
First citationKuhn, H. J. & Gollnick, K. (1972). Tetrahedron Lett., pp. 1909–1912.  Google Scholar
First citationLert, P. W. & Trindle, C. (1971). J. Am. Chem. Soc. 93, 6392–6395.  CrossRef CAS Google Scholar
First citationRajappa, S. (1984). Compherensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, p. 841. New York: Pergamon Press.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiemann, T., Li, Y. Q., Mataka, S. & Tashiro, M. (1995). J. Chem. Res. (M), pp. 6364–6379.  Google Scholar
First citationThiemann, T., Tanaka, Y. & Iniesta, J. (2009). Molecules, 14, 1013–1031.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1085-o1086
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds