organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1179-o1180

Crystal structure of N′-[(1E)-1-(6-methyl-2,4-dioxo-3,4-di­hydro-2H-pyran-3-yl­­idene)eth­yl]benzene­sulfono­hydrazide

aDepartment of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria, bDepartment of Pure and Industrial Chemistry, Nnamdi Azikiwe University, PMB 5025, Awka, Anambra State, Nigeria, and cSchool of Chemical Sciences, the University of Auckland Private Bag 92019, Auckland 1142, New Zealand
*Correspondence e-mail: oguejiofo.ujam@unn.edu.ng

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 October 2014; accepted 15 October 2014; online 24 October 2014)

In the title compound, C14H14N2O5S, the mol­ecule exists in the enamine (C=C—NH) tautomeric form. The hydrazone fragment derived from the 3-acetyl-4-hy­droxy-6-methyl-2H-pyran-2-one moiety is approximately planar, with a maximum deviation of 0.1291 (11) Å for the N atom bound to the S atom of the benzensulfono­hydrazide group. The latter adopts a gauche conformation relative to the hydrazone N—N bond, with an N—N—S angle of 113.54 (10)°. There is an intra­molecular N—H⋯O=C hydrogen bond that stabilizes the tautomeric form. In the crystal, mol­ecules are linked by N—H⋯O=C hydrogen bonds into chains extending parallel to [100].

1. Related literature

3-Acetyl-4-hy­droxy-6-methyl-2H-pyran-2-one and its derivatives have received attention due to their coordination chemistry, pharmaceutical significance and biologically activities (Battaini et al., 2000[Battaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. (2000). J. Biol. Inorg. Chem. 5, 262-268.]; Puerta & Cohen, 2003[Puerta, D. T. & Cohen, S. M. (2003). Inorg. Chem. 42, 3423-3430.]; Rao & Narasaiah, 2003[Rao, P. V. & Narasaiah, A. V. (2003). Indian J. Chem. Sect. A, 42, 1896-1899.]; Zucolotto Chalaça et al., 2002[Zucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45-52.]; Fouad et al., 2010[Fouad, D. M., Rayoumi, A., El-Gahami, M. A., Ibrahim, S. A. & Hammam, A. M. (2010). Nat. Sci. 2, 817-827.]; Kubaisi & Ismail, 1994[Kubaisi, A. A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785-1788.]; Rao et al., 1985[Rao, N. R., Raju, V. J. T., Rao, P. V. & Ganorkar, M. C. (1985). Natl. Acad. Sci. Lett. 8, 343-346.]; Deshmukh et al., 2010a[Deshmukh, P. S., Yaul, A. R., Bhojane, J. N. & Aswar, A. S. (2010a). World Appl. Sci. J. 9, 1301-1307.],b[Deshmukh, P. S., Yaul, A. R., Bhojane, J. N. & Aswar, A. S. (2010b). World Appl. Sci. J. 5, 57-61.]; Munde et al., 2009[Munde, A. S., Jagdale, A. N., Jadhav, S. M. & Chondhekar, T. K. (2009). J. Korean Chem. Soc. 53, 407-414.], 2010[Munde, A. S., Jagdale, A. N., Jadhav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349-359.]; Faidallah et al., 2011[Faidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). Eur. J. Chem. 2, 243-250.]; Jadhav et al., 2010[Jadhav, S. M., Munde, A. S., Shankarwar, S. G., Patharkar, V. R., Shelke, V. A. & Chondhekar, T. K. (2010). J. Korean Chem. Soc. 54, 515-522.]). 3-Acetyl-4-hy­droxy-6-methyl-2H-pyran-2-one is also well-noted for its fungicidal (Rao et al., 1978[Rao, D. S., Ganorkar, M. C., Rao, D. L. S. & John, V. T. (1978). Natl Acad. Sci. Lett. 1, 402-404.]), herbicidal and anti­microbial activities (Zucolotto Chalaça et al., 2002[Zucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45-52.]). The title compound is a new hydrazone prepared as part of an on-going research to study the ligating ability and anti­microbial properties of 3-acetyl-4-hy­droxy-6-methyl-2H-pyran-2-one hydrazones and their derivatives. For the crystal structure of a related thio­semicarbazone, see: Vrdoljak et al. (2008[Vrdoljak, V., Prugovečki, B., Cindrić, M., Matković-Čalogovic, D. & Brbot-Šaranović, A. (2008). Acta Chim. Slov. 55, 828-833.]). For a benzene­sulfono­hydrazide derivative of a similar tautomeric enamine form, see: Ukwueze et al. (2014[Ukwueze, N. N., Ukoha, P. O., Ujam, O. T., Asegbeloyin, J. N. & Groutso, T. (2014). Acta Cryst. E70, o730-o731.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H14N2O5S

  • Mr = 322.33

  • Monoclinic, P 21 /n

  • a = 7.4797 (4) Å

  • b = 15.2458 (7) Å

  • c = 12.7820 (6) Å

  • β = 94.282 (3)°

  • V = 1453.51 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 99 K

  • 0.30 × 0.30 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.659, Tmax = 0.746

  • 17170 measured reflections

  • 3484 independent reflections

  • 2817 reflections with I > 2σ(I)

  • Rint = 0.056

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.126

  • S = 1.05

  • 3484 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O4i 0.89 (2) 1.89 (2) 2.7837 (19) 175 (2)
N2—HN2⋯O3 0.90 (2) 1.74 (2) 2.5194 (18) 144 (2)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Synthesis and Crystallisation top

A solution of 3-acetyl-4-hy­droxy-6-methyl-(2H)-pyran-2-one [168 mg, 1 mmol] in methanol (10 ml) was mixed with a solution of benzene­sulfono­hydrazide [172 mg, 1 mmol] in methanol (10 ml). The mixture was refluxed for 3 h, and the resulting solution cooled to obtain a white precipitate. The product was filtered, dried and recrystallized from methanol. Crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation of a methano­lic solution at room temperature for 48 h.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions with C—H = 0.95 - 0.98 Å and refined using a riding model with displacement parameters Uiso(H) = 1.2 Ueq(C) for aromatic and methyl­ene groups and Uiso(H) = 1.5 Ueq(C) for methyl groups. The two N—H hydrogen atoms were located in a difference map and were refined freely.

Related literature top

3-Acetyl-4-hydroxy-6-methyl-2H-pyran-2-one and its derivatives have received attention due to their coordination chemistry, pharmaceutical significance and biologically activities (Battaini et al., 2000; Puerta & Cohen, 2003; Rao & Narasaiah, 2003; Zucolotto Chalaça et al., 2002; Fouad et al., 2010; Kubaisi & Ismail, 1994; Rao et al., 1985; Deshmukh et al., 2010a,b; Munde et al., 2009, 2010; Faidallah et al., 2011; Jadhav et al., 2010). 3-Acetyl-4-hydroxy-6-methyl-2H-pyran-2-one is also well-noted for its fungicidal (Rao et al., 1978), herbicidal and antimicrobial activities (Zucolotto Chalaça et al., 2002). The title compound is a new hydrazone prepared as part of an on-going research to study the ligating ability and antimicrobial properties of 3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one hydrazones and their derivatives. For the crystal structure of a related thiosemicarbazone, see: Vrdoljak et al. (2008). For a benzenesulfonohydrazide derivative of a similar tautomeric enamine form, see: Ukwueze et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
The molecular structure and atom numbering of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Intramolecular N2–Hn2···O3 and intermolecular N1–Hn1···O4 (dotted lines) hydrogen bonding interactions in the title compound. [Symmetry codes: i) 1+x, y, z; ii) -1+x, y, z; iii) -2+x, y, z.]

The packing diagram of the title compound showing intra- and intermolecular N—H···OC hydrogen bonds as dotted lines.
N'-[(1E)-1-(6-Methyl-2,4-dioxo-3,4-dihydro-2H-pyran-3-ylidene)ethyl]benzenesulfonohydrazide top
Crystal data top
C14H14N2O5SF(000) = 672
Mr = 322.33Dx = 1.473 Mg m3
Monoclinic, P21/nMelting point: 473 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.4797 (4) ÅCell parameters from 5140 reflections
b = 15.2458 (7) Åθ = 2.7–28.0°
c = 12.7820 (6) ŵ = 0.25 mm1
β = 94.282 (3)°T = 99 K
V = 1453.51 (12) Å3Needle, colourless
Z = 40.30 × 0.30 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3484 independent reflections
Radiation source: fine-focus sealed tube2817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.659, Tmax = 0.746k = 2019
17170 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.4046P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3484 reflectionsΔρmax = 0.35 e Å3
209 parametersΔρmin = 0.41 e Å3
Crystal data top
C14H14N2O5SV = 1453.51 (12) Å3
Mr = 322.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4797 (4) ŵ = 0.25 mm1
b = 15.2458 (7) ÅT = 99 K
c = 12.7820 (6) Å0.30 × 0.30 × 0.12 mm
β = 94.282 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3484 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2817 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.746Rint = 0.056
17170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
3484 reflectionsΔρmin = 0.41 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1162 (3)0.17867 (12)0.16895 (13)0.0281 (4)
H10.00920.16980.15540.034*
C20.2300 (3)0.10824 (12)0.19238 (14)0.0326 (4)
H20.18240.05050.19450.039*
C30.4125 (3)0.12162 (13)0.21263 (13)0.0321 (4)
H30.48900.07320.22980.038*
C40.4844 (3)0.20534 (13)0.20807 (13)0.0322 (4)
H40.60990.21390.22110.039*
C50.3730 (3)0.27633 (12)0.18449 (12)0.0280 (4)
H50.42140.33380.18120.034*
C60.1896 (2)0.26269 (11)0.16563 (12)0.0237 (4)
C70.2970 (2)0.31837 (11)0.04228 (12)0.0216 (3)
C80.3518 (2)0.41187 (11)0.02935 (15)0.0289 (4)
H8A0.24460.44870.01830.043*
H8B0.42390.41690.03130.043*
H8C0.42280.43130.09260.043*
C90.4199 (2)0.24839 (10)0.06583 (11)0.0206 (3)
C100.3574 (2)0.15821 (10)0.06591 (12)0.0227 (3)
C110.4934 (2)0.09113 (11)0.08080 (12)0.0231 (3)
H110.45810.03130.08020.028*
C120.6670 (2)0.11099 (11)0.09535 (12)0.0256 (4)
C130.8158 (2)0.04793 (13)0.11667 (16)0.0351 (4)
H13A0.86390.05380.18980.053*
H13B0.91080.06020.06990.053*
H13C0.77130.01190.10450.053*
C140.6075 (2)0.26625 (11)0.08402 (12)0.0231 (3)
N10.0028 (2)0.35893 (9)0.00836 (11)0.0236 (3)
N20.12527 (19)0.29758 (9)0.03004 (10)0.0223 (3)
O10.12058 (18)0.33764 (9)0.18100 (10)0.0336 (3)
O20.14865 (19)0.43127 (8)0.16350 (10)0.0361 (3)
O30.19542 (17)0.13680 (8)0.05307 (10)0.0289 (3)
O40.68037 (16)0.33852 (8)0.09030 (10)0.0293 (3)
O50.72498 (16)0.19616 (8)0.09491 (9)0.0260 (3)
S0.04830 (6)0.35372 (3)0.13822 (3)0.02574 (15)
HN10.102 (3)0.3549 (13)0.0260 (16)0.033 (5)*
HN20.100 (3)0.2408 (16)0.0391 (17)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (10)0.0252 (8)0.0276 (8)0.0063 (7)0.0026 (7)0.0010 (6)
C20.0455 (11)0.0217 (8)0.0306 (9)0.0031 (8)0.0026 (8)0.0002 (7)
C30.0413 (11)0.0308 (9)0.0238 (8)0.0067 (8)0.0004 (8)0.0004 (7)
C40.0305 (10)0.0400 (10)0.0255 (8)0.0011 (8)0.0013 (7)0.0011 (7)
C50.0327 (10)0.0274 (9)0.0237 (8)0.0071 (8)0.0011 (7)0.0002 (6)
C60.0305 (9)0.0222 (8)0.0185 (7)0.0029 (7)0.0023 (7)0.0014 (6)
C70.0237 (8)0.0223 (8)0.0198 (7)0.0050 (6)0.0076 (6)0.0039 (6)
C80.0258 (9)0.0192 (8)0.0423 (10)0.0029 (7)0.0068 (8)0.0026 (7)
C90.0222 (8)0.0201 (8)0.0200 (7)0.0036 (6)0.0059 (6)0.0018 (6)
C100.0267 (9)0.0221 (8)0.0196 (7)0.0037 (7)0.0051 (6)0.0011 (6)
C110.0256 (9)0.0186 (7)0.0255 (7)0.0025 (6)0.0044 (7)0.0004 (6)
C120.0307 (9)0.0226 (8)0.0242 (7)0.0012 (7)0.0061 (7)0.0005 (6)
C130.0269 (10)0.0306 (10)0.0476 (11)0.0019 (8)0.0015 (8)0.0021 (8)
C140.0246 (9)0.0223 (8)0.0231 (7)0.0015 (7)0.0061 (6)0.0035 (6)
N10.0219 (7)0.0230 (7)0.0265 (7)0.0009 (6)0.0059 (6)0.0017 (5)
N20.0213 (7)0.0210 (7)0.0251 (6)0.0014 (6)0.0051 (5)0.0000 (5)
O10.0352 (7)0.0369 (7)0.0303 (6)0.0015 (6)0.0129 (6)0.0034 (5)
O20.0450 (8)0.0206 (6)0.0422 (7)0.0044 (6)0.0010 (6)0.0050 (5)
O30.0245 (6)0.0243 (6)0.0380 (7)0.0073 (5)0.0031 (5)0.0003 (5)
O40.0221 (6)0.0243 (6)0.0421 (7)0.0050 (5)0.0072 (5)0.0061 (5)
O50.0227 (6)0.0239 (6)0.0318 (6)0.0020 (5)0.0051 (5)0.0020 (5)
S0.0308 (3)0.0203 (2)0.0266 (2)0.00152 (17)0.00559 (18)0.00282 (14)
Geometric parameters (Å, º) top
C1—C21.389 (3)C9—C101.452 (2)
C1—C61.396 (2)C10—O31.254 (2)
C1—H10.9500C10—C111.445 (2)
C2—C31.386 (3)C11—C121.332 (2)
C2—H20.9500C11—H110.9500
C3—C41.388 (3)C12—O51.369 (2)
C3—H30.9500C12—C131.481 (3)
C4—C51.386 (3)C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C5—C61.391 (3)C13—H13C0.9800
C5—H50.9500C14—O41.229 (2)
C6—S1.7635 (18)C14—O51.384 (2)
C7—N21.321 (2)N1—N21.401 (2)
C7—C91.426 (2)N1—S1.6712 (15)
C7—C81.496 (2)N1—HN10.89 (2)
C8—H8A0.9800N2—HN20.90 (2)
C8—H8B0.9800O1—S1.4345 (13)
C8—H8C0.9800O2—S1.4246 (13)
C9—C141.431 (2)
C2—C1—C6118.68 (17)O3—C10—C9123.66 (15)
C2—C1—H1120.7C11—C10—C9116.55 (15)
C6—C1—H1120.7C12—C11—C10121.76 (15)
C3—C2—C1120.40 (17)C12—C11—H11119.1
C3—C2—H2119.8C10—C11—H11119.1
C1—C2—H2119.8C11—C12—O5121.38 (16)
C2—C3—C4120.47 (18)C11—C12—C13126.11 (16)
C2—C3—H3119.8O5—C12—C13112.47 (15)
C4—C3—H3119.8C12—C13—H13A109.5
C5—C4—C3119.92 (18)C12—C13—H13B109.5
C5—C4—H4120.0H13A—C13—H13B109.5
C3—C4—H4120.0C12—C13—H13C109.5
C4—C5—C6119.38 (16)H13A—C13—H13C109.5
C4—C5—H5120.3H13B—C13—H13C109.5
C6—C5—H5120.3O4—C14—O5114.24 (15)
C5—C6—C1121.14 (17)O4—C14—C9127.28 (16)
C5—C6—S119.04 (13)O5—C14—C9118.48 (14)
C1—C6—S119.81 (14)N2—N1—S113.54 (10)
N2—C7—C9116.83 (14)N2—N1—HN1110.8 (13)
N2—C7—C8119.20 (16)S—N1—HN1111.7 (14)
C9—C7—C8123.96 (15)C7—N2—N1120.97 (14)
C7—C8—H8A109.5C7—N2—HN2115.3 (16)
C7—C8—H8B109.5N1—N2—HN2123.2 (16)
H8A—C8—H8B109.5C12—O5—C14122.25 (13)
C7—C8—H8C109.5O2—S—O1121.29 (8)
H8A—C8—H8C109.5O2—S—N1104.51 (8)
H8B—C8—H8C109.5O1—S—N1105.48 (8)
C7—C9—C14120.05 (14)O2—S—C6108.08 (8)
C7—C9—C10120.42 (15)O1—S—C6108.75 (8)
C14—C9—C10119.45 (15)N1—S—C6108.02 (7)
O3—C10—C11119.79 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O4i0.89 (2)1.89 (2)2.7837 (19)175 (2)
N2—HN2···O30.90 (2)1.74 (2)2.5194 (18)144 (2)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O4i0.89 (2)1.89 (2)2.7837 (19)175 (2)
N2—HN2···O30.90 (2)1.74 (2)2.5194 (18)144 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank the Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria, for financial assistance, the Department of Chemistry, University of Auckland, New Zealand, where the data were collected, and Nkechinyere N. Ukwueze for a generous donation of benzene­sulfono­hydrazide.

References

First citationBattaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. (2000). J. Biol. Inorg. Chem. 5, 262–268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeshmukh, P. S., Yaul, A. R., Bhojane, J. N. & Aswar, A. S. (2010a). World Appl. Sci. J. 9, 1301–1307.  CAS Google Scholar
First citationDeshmukh, P. S., Yaul, A. R., Bhojane, J. N. & Aswar, A. S. (2010b). World Appl. Sci. J. 5, 57–61.  CAS Google Scholar
First citationFaidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). Eur. J. Chem. 2, 243–250.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFouad, D. M., Rayoumi, A., El-Gahami, M. A., Ibrahim, S. A. & Hammam, A. M. (2010). Nat. Sci. 2, 817–827.  CAS Google Scholar
First citationJadhav, S. M., Munde, A. S., Shankarwar, S. G., Patharkar, V. R., Shelke, V. A. & Chondhekar, T. K. (2010). J. Korean Chem. Soc. 54, 515–522.  CrossRef CAS Google Scholar
First citationKubaisi, A. A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785–1788.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMunde, A. S., Jagdale, A. N., Jadhav, S. M. & Chondhekar, T. K. (2009). J. Korean Chem. Soc. 53, 407–414.  CAS Google Scholar
First citationMunde, A. S., Jagdale, A. N., Jadhav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349–359.  Web of Science CrossRef CAS Google Scholar
First citationPuerta, D. T. & Cohen, S. M. (2003). Inorg. Chem. 42, 3423–3430.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, D. S., Ganorkar, M. C., Rao, D. L. S. & John, V. T. (1978). Natl Acad. Sci. Lett. 1, 402–404.  CAS Google Scholar
First citationRao, P. V. & Narasaiah, A. V. (2003). Indian J. Chem. Sect. A, 42, 1896–1899.  Google Scholar
First citationRao, N. R., Raju, V. J. T., Rao, P. V. & Ganorkar, M. C. (1985). Natl. Acad. Sci. Lett. 8, 343–346.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkwueze, N. N., Ukoha, P. O., Ujam, O. T., Asegbeloyin, J. N. & Groutso, T. (2014). Acta Cryst. E70, o730–o731.  CSD CrossRef IUCr Journals Google Scholar
First citationVrdoljak, V., Prugovečki, B., Cindrić, M., Matković-Čalogovic, D. & Brbot-Šaranović, A. (2008). Acta Chim. Slov. 55, 828–833.  CAS Google Scholar
First citationZucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45–52.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1179-o1180
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds