metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­bis­­(ethane-1,2-di­amine)(4-fluoro­aniline)cobalt(III) dichloride monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Chemistry, Chellammal Womens College, Chennai 600 032, India, and cDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 January 2019; accepted 7 March 2019; online 15 March 2019)

The hydrated title salt, [CoCl(C6H6FN)(C2H8N2)2]Cl2·H2O, comprises of one chlorido­bis­(ethane-1,2-di­amine)(4-fluoro­aniline)cobalt(III) cation, two chloride counter-anions and a water mol­ecule of crystallization. The CoIII ion has a distorted octa­hedral environment and is surrounded by four N atoms in the equatorial plane, with a fifth N atom and one Cl ligand occupying the axial positions. One of the methyl­ene C groups in one of the ethane-1,2-di­amine ligands is disordered over two set of sites in a 0.832 (10):0.168 (10) ratio. In the crystal, the complex cation, the two counter-anions and the water mol­ecule of crystallization are linked via N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonds, generating rings with R42(8), R21(6), R42(10) and R22(6) graph-set motifs within a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a result of the excellent coordination ability of ligands with N-donating groups, such as simple amines (Mitzi, 1996[Mitzi, D. B. (1996). Chem. Mater. 8, 791-800.]; Deeth et al., 1984[Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310-1320.]), cyanides (Wu et al., 2003[Wu, A.-Q., Cai, L.-Z., Chen, W.-T., Guo, G.-C. & Huang, J.-S. (2003). Acta Cryst. C59, m491-m493.]; Shores et al., 2002[Shores, M. P., Sokol, J. J. & Long, J. R. (2002). J. Am. Chem. Soc. 124, 2279-2292.]), or N-heterocyclic rings (Hagrman et al., 1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]; Willett et al., 2001[Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342-4352.]), their respective transition-metal complexes have always been an active area in coordination chemistry. Ethyl­enedi­amine (en) has been used in innumerable coordination compounds as a ligand (Cullen & Lingafelter, 1970[Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858-1864.]; Daniels et al., 1995[Daniels, L. M., Murillo, C. A. & Rodríguez, K. G. (1995). Inorg. Chim. Acta, 229, 27-32.]; Jameson et al., 1982[Jameson, G. B., Schneider, R., Dubler, E. & Oswald, H. R. (1982). Acta Cryst. B38, 3016-3020.]), because it not only chelates metal cations by two nitro­gen atoms, but also donates hydrogen atoms to form N—H⋯X hydrogen bonds. In the vast majority of cases, en coordinates to a central metal ion as a bidentate ligand via the two N atoms, forming a five-membered chelate ring. This ligand has been widely used to prepare a number of cobalt(III) complexes (Bailar & Clapp, 1945[Bailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171-175.]; Bailar & Rollinson, 1946[Bailar, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222-223.]). Inter­estingly, mixed-ligand cobalt(III) complexes find potential applications in the fields of anti­tumor, anti­bacterial, anti­microbial, radiosenzitation and cytotoxicity activities (Sayed et al., 1992[Sayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475-480.]; Teicher et al., 1990[Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971-6975.]; Arslan et al., 2009[Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519-527.]; Delehanty et al., 2008[Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830-837.]). It is well documented that cobalt(III)–chelate complexes can also function as efficient electron-transfer mediators in solar energy conversion schemes (Sapp et al., 2002[Sapp, S. A., Elliott, C. M., Contado, C., Caramori, S. & Bignozzi, C. A. (2002). J. Am. Chem. Soc. 124, 11215-11222.]). Complexes of cobalt are also useful for nutritional supplementation to provide cobalt in a form that effectively increases the bioavailability, for instance, vitamin B12 by microorganisms present in the gut. The structure determination of the title compound has been carried out against this background to ascertain the mol­ecular conformation, binding modes and hydrogen-bonding inter­actions in the crystal structure.

The structural entities of the title salt are displayed in Fig. 1[link]. The coordination environment around the CoIII atom is approximately octa­hedral and defined by one N-bound fluoro­aniline ligand, one chloride ion and two ethyl­enedi­amine ligands. The angles subtended by the chelating en ligands deviate the most from 90° [N1—Co1—N2 = 85.23 (6)° and N3—Co1—N4 = 84.99 (6)°]. The N atoms N2, N3, N4 and N5 define the equatorial plane, and N1 and Cl1 the axial ligands. The Co—N bond lengths range from 1.9598 (14) to 2.0077 (13) Å, with the longest (Co1—N5) being the bond to the monodentate 4-fluoro­aniline ligand. The methyl­ene C2 atom in one of the five-membered en ligands is disordered over two sets of sites, with a refined occupancy ratio of 0.831 (10):0.168 (10). The chelate ring (Co1/N1/C1/C2/N2) adopts a twisted conformation on the C1—C2 bond with puckering parameters q2 = 0.4012 (18) Å, and φ2 = 92.2 (16)°. The chelate ring Co1/N1/C1/C2′/N2 with the minor contribution to the disorder at C2′ likewise exhibits a twisted conformation with puckering parameters q2 = 0.149 (5) Å, and φ2 = 19 (3)°. The chelate ring Co1/N3/C3/C4/N4 has puckering parameters q2 = 0.4275 (15) Å, and φ2 = 282.72 (15)°. The latter value indicates a conformation between a twisted and an envelope form.

[Figure 1]
Figure 1
The structural entities of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The packing of the crystal structure is dominated by N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen-bonding inter­actions (Table 1[link]) between the complex cation, the two counter-anions and the water mol­ecule of crystallization, thereby generating rings with [R_{4}^{2}](8), [R_{2}^{1}](6), [R_{4}^{2}](10) and [R_{2}^{2}](6) graph-set motifs. Within the three-dimensional network (Figs. 2[link] and 3[link]), no ππ stacking inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl2i 0.83 (1) 2.36 (1) 3.158 (2) 163 (3)
O1W—H2W⋯Cl1 0.83 (1) 2.47 (2) 3.175 (2) 144 (3)
N1—H1C⋯Cl3ii 0.83 (2) 2.76 (2) 3.5027 (16) 148.7 (17)
N1—H1D⋯Cl2 0.82 (2) 2.47 (2) 3.2421 (16) 156.7 (19)
N2—H2E⋯Cl3 0.84 (2) 2.60 (2) 3.4080 (16) 160.7 (18)
N2—H2F⋯Cl3iii 0.91 (2) 2.70 (2) 3.5887 (16) 166 (2)
N3—H3C⋯O1W 0.88 (2) 2.18 (2) 2.989 (2) 152.2 (19)
N3—H3D⋯Cl2iv 0.85 (2) 2.50 (2) 3.2791 (16) 154.0 (17)
N4—H4D⋯Cl2 0.87 (2) 2.61 (2) 3.4007 (17) 151.6 (18)
N4—H4C⋯Cl3iii 0.84 (2) 2.56 (2) 3.3815 (16) 168.7 (17)
N5—H5A⋯Cl3 0.83 (2) 2.42 (2) 3.2345 (15) 168.6 (17)
N5—H5B⋯Cl3ii 0.90 (2) 2.38 (2) 3.2778 (15) 173.0 (17)
C4—H4A⋯Cl2v 0.97 2.81 3.5148 (18) 130
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
View of the three-dimensional hydrogen-bonded network of [CoIII(en)2(p-FC6H4NH2)Cl]Cl2·H2O, with hydrogen bonds indicated by dashed lines
[Figure 3]
Figure 3
Representative of all other hydrogen-bonding inter­actions, N—H⋯Cl hydrogen bonds are shown (dotted lines), generating an [R_{4}^{2}](8) ring motif.

Synthesis and crystallization

The complex was synthesized using di­chloridobis­(1,2-di­amino­ethane)­cobalt(III) chloride according to a reported method (Bailar & Clapp, 1945[Bailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171-175.]). 2 g of trans-[CoIII(en)2Cl2]Cl were suspended in 3–4 drops of deionized water. 3 ml of 4-fluoro­aniline were added dropwise over 20 min, and the final mixture was ground well for 30 min. Grinding was continued for half an hour, and a colour change was observed for every addition of amine; the colour was found to change from dull green to rosey red. The reaction mixture was set aside until no further colour change was observed. The product was allowed to stand overnight. Finally, the solid was washed 3–4 times with ethanol. The final complex was dissolved in 5–10 ml of deionized water and the solution heated to 343 K. The cobalt(III) complex was recrystallized from hot water by addition of a few drops of conc. HCl and cooling. The crystals were filtered, washed with ethanol and dried under vacuum.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methyl­ene group at C2 is disordered over two sets of sites and was refined with a 0.832 (10):0.168 (10) ratio.

Table 2
Experimental details

Crystal data
Chemical formula [CoCl(C6H6FN)(C2H8N2)2]Cl2·H2O
Mr 414.62
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.1712 (6), 9.5435 (8), 11.9771 (10)
α, β, γ (°) 104.231 (4), 99.490 (4), 100.705 (4)
V3) 867.57 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.47
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Eos detector
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.711, 0.810
No. of measured, independent and observed [I > 2σ(I)] reflections 15546, 3053, 2875
Rint 0.022
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.058, 1.12
No. of reflections 3053
No. of parameters 243
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.23
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Chloridobis(ethane-1,2-diamine)(4-fluoroaniline)cobalt(III) dichloride monohydrate top
Crystal data top
[CoCl(C6H6FN)(C2H8N2)2]Cl2·H2OZ = 2
Mr = 414.62F(000) = 428
Triclinic, P1Dx = 1.587 Mg m3
a = 8.1712 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5435 (8) ÅCell parameters from 6556 reflections
c = 11.9771 (10) Åθ = 1.8–25.0°
α = 104.231 (4)°µ = 1.47 mm1
β = 99.490 (4)°T = 293 K
γ = 100.705 (4)°Prism, dark-red
V = 867.57 (12) Å30.25 × 0.20 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Eos detector
3053 independent reflections
Radiation source: fine-focus sealed tube2875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scanθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 99
Tmin = 0.711, Tmax = 0.810k = 1111
15546 measured reflectionsl = 1414
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.2678P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.040
3053 reflectionsΔρmax = 0.47 e Å3
243 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms bonded to N and O atoms were freely refined. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8028 (3)0.2984 (2)0.70155 (17)0.0433 (4)
H1A0.70690.25960.73230.052*
H1B0.87890.23140.69940.052*
C20.7412 (5)0.3087 (3)0.5810 (2)0.0366 (7)0.831 (10)
H2A0.83630.32680.54340.044*0.831 (10)
H2B0.66150.21670.53310.044*0.831 (10)
C2'0.677 (2)0.2884 (16)0.5948 (9)0.0366 (7)0.168 (10)
H2C0.71640.24430.52510.044*0.168 (10)
H2D0.56880.22520.59320.044*0.168 (10)
C30.8170 (2)0.7410 (2)0.97814 (14)0.0355 (4)
H3A0.84000.83791.03530.043*
H3B0.85820.67301.01770.043*
C40.6297 (2)0.6855 (2)0.92613 (16)0.0380 (4)
H4A0.57010.65840.98420.046*
H4B0.58390.76180.90030.046*
C51.07502 (19)0.79981 (17)0.68416 (13)0.0260 (3)
C61.0343 (2)0.91023 (19)0.63617 (15)0.0336 (4)
H60.93180.89130.58160.040*
C71.1462 (2)1.0489 (2)0.66945 (17)0.0398 (4)
H71.12071.12390.63760.048*
C81.2952 (2)1.0728 (2)0.75043 (17)0.0393 (4)
C91.3379 (2)0.9665 (2)0.80007 (17)0.0404 (4)
H91.43950.98710.85580.049*
C101.2267 (2)0.82760 (19)0.76570 (15)0.0330 (4)
H101.25390.75300.79740.040*
N10.89406 (19)0.44838 (15)0.77835 (13)0.0274 (3)
N20.65522 (19)0.43488 (16)0.59361 (13)0.0302 (3)
N30.90333 (18)0.75159 (16)0.87969 (12)0.0270 (3)
N40.60849 (19)0.55338 (17)0.82415 (13)0.0300 (3)
N50.96160 (18)0.65309 (15)0.64670 (12)0.0264 (3)
O1W0.8073 (3)1.0395 (2)0.8821 (2)0.0898 (7)
F11.40512 (17)1.20859 (13)0.78300 (13)0.0650 (4)
Cl10.63686 (5)0.75092 (4)0.66669 (4)0.03357 (11)
Cl20.77375 (5)0.36339 (5)1.00298 (4)0.03664 (11)
Cl30.77258 (5)0.56575 (4)0.37113 (3)0.03353 (11)
Co10.78188 (2)0.59758 (2)0.73432 (2)0.02174 (8)
H5A0.907 (2)0.641 (2)0.5793 (18)0.028 (5)*
H5B1.027 (3)0.586 (2)0.6397 (17)0.040 (5)*
H2E0.658 (3)0.459 (2)0.5306 (19)0.036 (5)*
H3C0.907 (3)0.841 (2)0.8705 (18)0.043 (6)*
H3D1.004 (3)0.744 (2)0.9011 (17)0.033 (5)*
H4C0.510 (3)0.535 (2)0.7820 (18)0.035 (5)*
H4D0.622 (3)0.478 (2)0.8502 (18)0.040 (5)*
H2F0.544 (3)0.417 (2)0.5982 (19)0.051 (6)*
H1D0.891 (3)0.446 (2)0.846 (2)0.040 (6)*
H1C0.995 (3)0.465 (2)0.7716 (17)0.034 (5)*
H2W0.747 (3)0.996 (3)0.8157 (14)0.087 (10)*
H1W0.778 (4)1.118 (2)0.903 (3)0.089 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0486 (11)0.0300 (9)0.0484 (11)0.0114 (8)0.0022 (9)0.0098 (8)
C20.0345 (17)0.0298 (11)0.0397 (11)0.0034 (11)0.0061 (11)0.0039 (8)
C2'0.0345 (17)0.0298 (11)0.0397 (11)0.0034 (11)0.0061 (11)0.0039 (8)
C30.0345 (9)0.0432 (10)0.0253 (8)0.0069 (7)0.0098 (7)0.0032 (7)
C40.0317 (9)0.0466 (10)0.0364 (9)0.0109 (8)0.0153 (7)0.0069 (8)
C50.0250 (8)0.0295 (8)0.0247 (8)0.0055 (6)0.0088 (6)0.0084 (6)
C60.0323 (9)0.0372 (9)0.0325 (9)0.0077 (7)0.0035 (7)0.0147 (7)
C70.0443 (11)0.0340 (9)0.0450 (10)0.0078 (8)0.0102 (8)0.0190 (8)
C80.0371 (10)0.0327 (9)0.0433 (10)0.0024 (7)0.0119 (8)0.0079 (8)
C90.0259 (9)0.0485 (11)0.0409 (10)0.0023 (8)0.0007 (7)0.0110 (8)
C100.0279 (9)0.0378 (9)0.0363 (9)0.0094 (7)0.0056 (7)0.0156 (7)
N10.0255 (8)0.0334 (7)0.0262 (8)0.0088 (6)0.0064 (6)0.0119 (6)
N20.0284 (8)0.0317 (7)0.0270 (7)0.0041 (6)0.0000 (6)0.0082 (6)
N30.0217 (7)0.0317 (8)0.0252 (7)0.0055 (6)0.0041 (5)0.0053 (6)
N40.0221 (7)0.0367 (8)0.0312 (7)0.0053 (6)0.0045 (6)0.0117 (6)
N50.0266 (7)0.0289 (7)0.0234 (7)0.0066 (6)0.0048 (6)0.0075 (6)
O1W0.0933 (15)0.0445 (10)0.0991 (16)0.0212 (10)0.0361 (12)0.0042 (10)
F10.0572 (8)0.0422 (7)0.0782 (9)0.0157 (6)0.0012 (7)0.0149 (6)
Cl10.0306 (2)0.0346 (2)0.0362 (2)0.01223 (17)0.00199 (17)0.01167 (17)
Cl20.0293 (2)0.0498 (3)0.0349 (2)0.00972 (18)0.00575 (17)0.02020 (19)
Cl30.0331 (2)0.0377 (2)0.0293 (2)0.00967 (17)0.00385 (16)0.00964 (16)
Co10.01859 (12)0.02502 (12)0.02089 (12)0.00481 (8)0.00245 (8)0.00680 (9)
Geometric parameters (Å, º) top
C1—C2'1.472 (12)C7—H70.9300
C1—N11.477 (2)C8—F11.357 (2)
C1—C21.482 (3)C8—C91.365 (3)
C1—H1A0.9700C9—C101.383 (3)
C1—H1B0.9700C9—H90.9300
C2—N21.492 (3)C10—H100.9300
C2—H2A0.9700N1—Co11.9598 (14)
C2—H2B0.9700N1—H1D0.82 (2)
C2'—N21.445 (12)N1—H1C0.83 (2)
C2'—H2C0.9700N2—Co11.9655 (14)
C2'—H2D0.9700N2—H2E0.84 (2)
C3—N31.485 (2)N2—H2F0.91 (2)
C3—C41.494 (2)N3—Co11.9512 (14)
C3—H3A0.9700N3—H3C0.88 (2)
C3—H3B0.9700N3—H3D0.85 (2)
C4—N41.484 (2)N4—Co11.9613 (14)
C4—H4A0.9700N4—H4C0.84 (2)
C4—H4B0.9700N4—H4D0.87 (2)
C5—C101.383 (2)N5—Co12.0077 (13)
C5—C61.384 (2)N5—H5A0.83 (2)
C5—N51.447 (2)N5—H5B0.90 (2)
C6—C71.384 (3)O1W—H2W0.825 (10)
C6—H60.9300O1W—H1W0.825 (10)
C7—C81.369 (3)Cl1—Co12.2610 (4)
C2'—C1—N1117.6 (6)C1—N1—Co1109.86 (11)
N1—C1—C2108.71 (17)C1—N1—H1D105.6 (14)
N1—C1—H1A109.9Co1—N1—H1D111.8 (14)
C2—C1—H1A109.9C1—N1—H1C109.1 (13)
N1—C1—H1B109.9Co1—N1—H1C110.6 (13)
C2—C1—H1B109.9H1D—N1—H1C110 (2)
H1A—C1—H1B108.3C2'—N2—Co1115.5 (5)
N2—C2—C1107.1 (2)C2—N2—Co1109.53 (13)
N2—C2—H2A110.3C2'—N2—H2E117.5 (14)
C1—C2—H2A110.3C2—N2—H2E103.6 (13)
N2—C2—H2B110.3Co1—N2—H2E112.5 (14)
C1—C2—H2B110.3C2'—N2—H2F95.8 (11)
H2A—C2—H2B108.6C2—N2—H2F118.2 (11)
N2—C2'—C1110.1 (9)Co1—N2—H2F107.2 (13)
N2—C2'—H2C109.6H2E—N2—H2F106 (2)
C1—C2'—H2C109.7C3—N3—Co1111.09 (10)
N2—C2'—H2D109.6C3—N3—H3C107.5 (14)
C1—C2'—H2D109.6Co1—N3—H3C110.8 (14)
H2C—C2'—H2D108.1C3—N3—H3D107.2 (13)
N3—C3—C4107.41 (14)Co1—N3—H3D111.6 (13)
N3—C3—H3A110.2H3C—N3—H3D108.5 (19)
C4—C3—H3A110.2C4—N4—Co1108.62 (10)
N3—C3—H3B110.2C4—N4—H4C108.8 (13)
C4—C3—H3B110.2Co1—N4—H4C110.7 (13)
H3A—C3—H3B108.5C4—N4—H4D109.1 (13)
N4—C4—C3106.80 (14)Co1—N4—H4D109.6 (13)
N4—C4—H4A110.4H4C—N4—H4D110.0 (19)
C3—C4—H4A110.4C5—N5—Co1121.40 (10)
N4—C4—H4B110.4C5—N5—H5A107.3 (13)
C3—C4—H4B110.4Co1—N5—H5A103.8 (13)
H4A—C4—H4B108.6C5—N5—H5B107.7 (13)
C10—C5—C6120.28 (15)Co1—N5—H5B109.6 (12)
C10—C5—N5119.46 (14)H5A—N5—H5B106.0 (18)
C6—C5—N5120.23 (15)H2W—O1W—H1W105 (3)
C5—C6—C7119.91 (16)N3—Co1—N192.75 (6)
C5—C6—H6120.0N3—Co1—N484.99 (6)
C7—C6—H6120.0N1—Co1—N490.62 (7)
C8—C7—C6118.35 (16)N3—Co1—N2176.62 (6)
C8—C7—H7120.8N1—Co1—N285.23 (6)
C6—C7—H7120.8N4—Co1—N292.31 (6)
F1—C8—C9118.59 (17)N3—Co1—N592.74 (6)
F1—C8—C7118.41 (17)N1—Co1—N591.00 (6)
C9—C8—C7123.00 (16)N4—Co1—N5177.27 (6)
C8—C9—C10118.52 (16)N2—Co1—N590.01 (6)
C8—C9—H9120.7N3—Co1—Cl193.15 (5)
C10—C9—H9120.7N1—Co1—Cl1174.09 (4)
C5—C10—C9119.93 (15)N4—Co1—Cl189.58 (5)
C5—C10—H10120.0N2—Co1—Cl188.86 (4)
C9—C10—H10120.0N5—Co1—Cl189.03 (4)
N1—C1—C2—N248.3 (3)N5—C5—C10—C9178.51 (15)
N1—C1—C2'—N26.3 (13)C8—C9—C10—C51.0 (3)
N3—C3—C4—N448.91 (19)C2'—C1—N1—Co113.3 (8)
C10—C5—C6—C70.3 (2)C2—C1—N1—Co136.3 (2)
N5—C5—C6—C7177.80 (15)C1—C2'—N2—Co13.8 (13)
C5—C6—C7—C80.4 (3)C1—C2—N2—Co138.2 (3)
C6—C7—C8—F1179.91 (17)C4—C3—N3—Co132.55 (17)
C6—C7—C8—C90.3 (3)C3—C4—N4—Co143.33 (17)
F1—C8—C9—C10179.23 (16)C10—C5—N5—Co188.59 (17)
C7—C8—C9—C101.0 (3)C6—C5—N5—Co193.27 (16)
C6—C5—C10—C90.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl2i0.83 (1)2.36 (1)3.158 (2)163 (3)
O1W—H2W···Cl10.83 (1)2.47 (2)3.175 (2)144 (3)
N1—H1C···Cl3ii0.83 (2)2.76 (2)3.5027 (16)148.7 (17)
N1—H1D···Cl20.82 (2)2.47 (2)3.2421 (16)156.7 (19)
N2—H2E···Cl30.84 (2)2.60 (2)3.4080 (16)160.7 (18)
N2—H2F···Cl3iii0.91 (2)2.70 (2)3.5887 (16)166 (2)
N3—H3C···O1W0.88 (2)2.18 (2)2.989 (2)152.2 (19)
N3—H3D···Cl2iv0.85 (2)2.50 (2)3.2791 (16)154.0 (17)
N4—H4D···Cl20.87 (2)2.61 (2)3.4007 (17)151.6 (18)
N4—H4C···Cl3iii0.84 (2)2.56 (2)3.3815 (16)168.7 (17)
N5—H5A···Cl30.83 (2)2.42 (2)3.2345 (15)168.6 (17)
N5—H5B···Cl3ii0.90 (2)2.38 (2)3.2778 (15)173.0 (17)
C4—H4A···Cl2v0.972.813.5148 (18)130
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+2.
 

Acknowledgements

YA and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationArslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527.  Web of Science CrossRef PubMed Google Scholar
First citationBailar, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222–223.  Google Scholar
First citationBailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171–175.  CrossRef CAS Web of Science Google Scholar
First citationCullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858–1864.  CrossRef CAS Web of Science Google Scholar
First citationDaniels, L. M., Murillo, C. A. & Rodríguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32.  CrossRef CAS Web of Science Google Scholar
First citationDeeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310–1320.  CrossRef CAS Web of Science Google Scholar
First citationDelehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837.  Web of Science CrossRef CAS Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef CAS Google Scholar
First citationJameson, G. B., Schneider, R., Dubler, E. & Oswald, H. R. (1982). Acta Cryst. B38, 3016–3020.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMitzi, D. B. (1996). Chem. Mater. 8, 791–800.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSapp, S. A., Elliott, C. M., Contado, C., Caramori, S. & Bignozzi, C. A. (2002). J. Am. Chem. Soc. 124, 11215–11222.  CrossRef CAS Google Scholar
First citationSayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475–480.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShores, M. P., Sokol, J. J. & Long, J. R. (2002). J. Am. Chem. Soc. 124, 2279–2292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975.  CAS PubMed Web of Science Google Scholar
First citationWillett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, A.-Q., Cai, L.-Z., Chen, W.-T., Guo, G.-C. & Huang, J.-S. (2003). Acta Cryst. C59, m491–m493.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds