Download citation
Download citation
link to html
The two title compounds of 2,2'-bi­imidazole (Bim) with 5-sulfosalicylic acid (5-H2SSA) and 2,2'-bi­benzimidazole (Bbim) with 5-H2SSA are 1:2 organic salts, viz. C6H8N42+·2C7H5O6S-, (I), and C14H12N42+·2C7H5O6S-·3H2O, (II). The cation of compound (I) lies on a centre of inversion, whereas that of (II) lies on a twofold axis. Whilst compound (I) is anhydrous, three water mol­ecules are incorporated into the crystal structure of (II). The substitution of imidazole H atoms by other chemical groups may favour the incorporation of water mol­ecules into the crystal structure. In both compounds, the component cations and anions adopt a homogeneous arrangement, forming alternating cation and anion layers which run parallel to the (001) plane in (I) and to the (100) plane in (II). By a combination of N-H...O, O-H...O and C-H...O hydrogen bonds, the ions in both compounds are linked into three-dimensional networks. In addition, [pi]-[pi] inter­actions are observed between symmetry-related benzene rings of Bbim2+ cations in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010804300X/tr3049sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010804300X/tr3049Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010804300X/tr3049IIsup3.hkl
Contains datablock II

CCDC references: 724202; 724203

Comment top

In a continuation of our studies (Meng et al., 2007, 2008) of the molecular and supramolecular structures of organic salts formed by 5-sulfosaliyclic acid (5-H2SSA) and N-containing Lewis bases of 2,2'-bisimidazole (Bim) and 2,2'-bisbenzimidazole (Bbim), we report here the title compounds, (I) and (II).

In both compounds, the H atoms are transferred from the sulfonic acid group to the imidazole N atom, forming 1:2 organic salts (Lewis base to acid). However, there are some apparent differences between their crystallization behaviours. Firstly, compound (I) is anhydrous and crystallizes in space group P1. The two parts of the Bim2+ cation are related by an inversion centre at (1, 0, 1/2) and the dihedral angle between them is 0°. The asymmetric unit thus consists of half a Bim2+ cation and a 5-HSSA- anion (Fig. 1). In comparison, compound (II) crystallizes in the monoclinic system, space group C2/c. There is a two-fold screw axis lying at (0, y, 1/4) relating the two halves of the Bbim2+ cation, with a dihedral angle of 36.5 (1)° between them. There are also one and a half water molecules in the asymmetric unit (Fig. 2). Secondly, the conformations of the sulfonate groups with respect to their respective benzene rings are different in the two compounds. In (I), the plane defined by three sulfonate O atoms is twisted away from the benzene ring, with a dihedral angle of 88.5 (1)°. The perpendicular distances of each O atom to the benzene plane are ca 0.074 (1), 1.155 (1) and 1.219 (1) Å, respectively. However, the corresponding angles and distances in (II) are 89.4 (1)° and ca 0.439 (1), 0.841 (1) and 1.398 (1) Å. The spatial differences between the cations and anions in the two compounds may be largely attributed to the involvement of the benzene rings of the Bbim2+ moiety forming ππ interactions.

In the packing structures of the title compounds, the ionic components are linked into three-dimensional networks by a combination of N—H···O, O—H···O and C—H···O hydrogen bonds. In (I), the supramolecular structure can be analysed in terms of two substructures. Firstly, via intermolecular hydrogen bonds N1—H1···O5, N2—H2···O5(2 - x, -y, 1 - z), N2—H2···O2(1 + x, y, -1 + z), O1—H1A···O4(-x, -y, 2 - z) and C6—H6···O1(-x, -y, 2 - z), the dications and anions are linked into two-dimensional layers running parallel to the (010) plane (Fig. 3). Secondly, the (010) layers are joined together by the combinatory actions of hydrogen bonds C3—H3···O3(2 - x, 1 - y, 2 - z) and C9—H9···O6(1 - x, 1 - y, 1 - z), forming a three-dimensional network (Fig. 3). Although no ππ interactions are observed between the imidazole and benzene rings of (I), the cations and anions each adopt an alternating homogeneous arrangement, i.e. the Bim2+ cations stack only on top of Bim2+ cations and 5-HSSA- anions stack only on top of 5-HSSA- anions.

Similar to the packing pattern in (I), the components in (II) are linked into a three-dimensional network by means of extensive hydrogen bonding (Table 1), and the Bbim2+ dications and 5-HSSA- anions also form a homogeneous arrangement (Fig. 4). However, analysis using PLATON (Spek, 2003) indicates that strong ππ interactions exist between symmetry-related benzene rings in these layers [centroid-to-centroid separation = 3.572 (2)/3.835 (2) Å, interplanar spacing = 3.421 (2)/3.520 (2) Å; symmetry codes: (-x, 1 - y, 1 - z)/(-x, 2 - y, 1 - z), respectively]. A search of the Cambridge Structural Database (CSD, Version 5.29; Allen, 2002) for organic compounds containing at least one 5-HSSA- anion and imidazole cation was conducted to determine the effect of the substitution of imidazole H atoms on the incorporation of water molecules into the crystal structure. Only one 1:1 salt formed by 5-sulfosaliyclic acid and imidazole was found to be anhydrous [CSD refcode HILNEW (Yang, 2007)]. The other three hits, consisting of substituted imidazole cations and 5-HSSA- anions, all incorporated one to three water molecules [refcodes CIKRUK (Hou, 2007), XEYZUX (Wang & Wei, 2007) and WUYRUD (Madarasz et al., 2002). Although no systematic rules can be drawn from the above, it can be speculated that the substitution of the imidazole H atoms by methyl, phenyl etc. may be in favour of water molecules being incorporated into these organic salts. We will study this potential correlation further.

In conclusion, two 1:2 organic salts formed by 5-H2SSA and imidazole derivatives are reported in this paper. In both compounds, the cations and anions adopt a homogeneous arrangement, forming alternating cation and anion layers. It was also found that substitution of imidazole H atoms by other groups may favour the cocrystallisation of water molecules into the crystal structure.

Experimental top

2,2'-Bisimidazole and 2,2'-bisbenzimidazole were synthesized according to the methods of Cromer et al. (1987) and Sakamoto et al. (2000). All other reagents and solvents were used as obtained. For (I), 1:2 molar quantities of 2,2'-bisimidazole (0.2 mmol, 26.8 mg) and 5-sulfosaliyclic acid dihydrate (0.4 mmol, 101.6 mg) were dissolved in 95% methanol (20 ml). The mixture was stirred for 10 min at ambient temperature and then filtered. The resulting colourless solution was kept in air for 3 d, yielding colourless plate crystals. The crystals were filtered off carefully, washed with distilled water and dried in air (yield: 40%, 46.0 mg, based on the 1:2 organic salt). Similarly, crystals of (II) were obtained by 1:2 molar quantities of 2,2'-bisbenzimidazole (0.2 mmol, 46.8 mg) and 5-sulfosaliyclic acid dihydrate (0.4 mmol, 101.6 mg) being dissolved in 95% methanol (20 ml). The mixture was stirred for 30 min at room temperature and then filtered. The resulting colourless solution was kept in air for one week, yielding colourless plate crystals. The crystals were filtered off carefully, washed with distilled water and dried in air (yield: 55%, 145.0 mg, based on the 1:2 organic salt)

Refinement top

For both compounds, H atoms bonded to aromatic C atoms were positioned geometrically, with C—H = 0.93 Å, and refined in a riding mode, with Uiso(H) = 1.2Ueq(aromatic C). H atoms bonded to N and O atoms were found in difference maps and the N—H and O—H distances were refined freely [Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), respectively].

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry code: (a) 2 - x,-y,1 - z.]
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry code: (b) -x,y,1/2 - z.]
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of the three-dimensional network. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted. The bottom outlined area shows the (010) framework.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of the three-dimensional network. For the sake of clarity, H atoms not involved in the motif have been omitted.
(I) 2,2'-bisimidazolium bis(3-carboxy-4-hydroxybenzenesulfonate) top
Crystal data top
C6H8N42+·2C7H5O6SZ = 1
Mr = 570.5F(000) = 294
Triclinic, P1Dx = 1.659 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4296 (5) ÅCell parameters from 1888 reflections
b = 8.2995 (7) Åθ = 2.5–26.0°
c = 12.7083 (11) ŵ = 0.31 mm1
α = 85.961 (2)°T = 297 K
β = 88.895 (2)°Plate, colourless
γ = 89.573 (1)°0.20 × 0.16 × 0.04 mm
V = 571.13 (9) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2451 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
0.3° wide ω exposures scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 66
Tmin = 0.931, Tmax = 0.988k = 1010
6501 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
2451 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C6H8N42+·2C7H5O6Sγ = 89.573 (1)°
Mr = 570.5V = 571.13 (9) Å3
Triclinic, P1Z = 1
a = 5.4296 (5) ÅMo Kα radiation
b = 8.2995 (7) ŵ = 0.31 mm1
c = 12.7083 (11) ÅT = 297 K
α = 85.961 (2)°0.20 × 0.16 × 0.04 mm
β = 88.895 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1758 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.988Rint = 0.045
6501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.41 e Å3
2451 reflectionsΔρmin = 0.30 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4395 (5)0.2238 (3)1.0122 (2)0.0296 (6)
C20.6516 (5)0.3191 (3)1.0075 (2)0.0351 (6)
C30.7613 (5)0.3664 (3)0.9099 (2)0.0402 (7)
H30.90330.42870.90690.048*
C40.6603 (5)0.3213 (3)0.8189 (2)0.0377 (7)
H40.73430.35300.75420.045*
C50.4462 (5)0.2276 (3)0.8221 (2)0.0304 (6)
C60.3387 (5)0.1794 (3)0.9177 (2)0.0302 (6)
H60.19730.11650.91990.036*
C70.3250 (5)0.1720 (3)1.1134 (2)0.0353 (6)
C80.9888 (5)0.0813 (3)0.4762 (2)0.0334 (6)
C90.8511 (7)0.3263 (4)0.4361 (3)0.0558 (9)
H90.75530.41970.43590.067*
C101.0489 (7)0.3021 (4)0.3758 (3)0.0553 (9)
H101.11630.37610.32510.066*
N10.8160 (5)0.1875 (3)0.4984 (2)0.0421 (6)
H10.704 (6)0.168 (4)0.546 (3)0.050*
N21.1354 (5)0.1506 (3)0.40089 (19)0.0422 (6)
H21.244 (6)0.106 (4)0.366 (3)0.051*
O10.1414 (4)0.0714 (3)1.10746 (17)0.0467 (6)
H1A0.079 (7)0.035 (4)1.164 (3)0.070*
O20.3954 (4)0.2168 (3)1.19812 (16)0.0523 (6)
O30.7570 (4)0.3692 (3)1.09478 (18)0.0500 (6)
H3A0.670 (8)0.338 (5)1.146 (3)0.075*
O40.0980 (4)0.0833 (3)0.72930 (15)0.0531 (6)
O50.4997 (4)0.0814 (3)0.64968 (17)0.0533 (6)
O60.2659 (5)0.3249 (3)0.64233 (19)0.0688 (8)
S10.31517 (12)0.17641 (8)0.70293 (5)0.0336 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0322 (14)0.0301 (13)0.0260 (14)0.0020 (10)0.0022 (11)0.0012 (11)
C20.0307 (14)0.0334 (14)0.0420 (17)0.0028 (11)0.0022 (12)0.0074 (12)
C30.0303 (15)0.0365 (15)0.0538 (19)0.0106 (11)0.0072 (13)0.0048 (13)
C40.0343 (15)0.0363 (14)0.0421 (17)0.0074 (11)0.0109 (13)0.0016 (12)
C50.0321 (14)0.0302 (13)0.0286 (14)0.0005 (10)0.0026 (11)0.0003 (11)
C60.0272 (13)0.0311 (13)0.0319 (15)0.0038 (10)0.0030 (11)0.0016 (11)
C70.0357 (15)0.0328 (14)0.0375 (17)0.0040 (11)0.0001 (12)0.0027 (12)
C80.0395 (16)0.0313 (13)0.0302 (15)0.0026 (11)0.0025 (12)0.0090 (11)
C90.080 (2)0.0352 (16)0.052 (2)0.0120 (16)0.0034 (19)0.0012 (15)
C100.086 (3)0.0347 (16)0.045 (2)0.0089 (16)0.0065 (18)0.0022 (14)
N10.0478 (16)0.0403 (14)0.0384 (15)0.0040 (11)0.0065 (12)0.0070 (11)
N20.0533 (16)0.0378 (14)0.0354 (15)0.0063 (11)0.0156 (12)0.0067 (11)
O10.0466 (13)0.0548 (13)0.0383 (13)0.0213 (10)0.0086 (10)0.0012 (10)
O20.0627 (14)0.0636 (14)0.0310 (12)0.0188 (11)0.0012 (10)0.0035 (10)
O30.0462 (13)0.0595 (14)0.0457 (14)0.0175 (10)0.0037 (10)0.0114 (11)
O40.0445 (12)0.0816 (16)0.0340 (12)0.0273 (11)0.0061 (10)0.0092 (11)
O50.0475 (13)0.0685 (14)0.0452 (13)0.0062 (11)0.0121 (10)0.0180 (11)
O60.105 (2)0.0461 (13)0.0545 (15)0.0005 (13)0.0266 (14)0.0083 (11)
S10.0346 (4)0.0367 (4)0.0290 (4)0.0032 (3)0.0043 (3)0.0004 (3)
Geometric parameters (Å, º) top
C1—C21.400 (4)C8—N21.334 (4)
C1—C61.403 (3)C8—C8i1.445 (5)
C1—C71.457 (4)C9—C101.330 (5)
C2—O31.350 (3)C9—N11.363 (4)
C2—C31.398 (4)C9—H90.9300
C3—C41.366 (4)C10—N21.358 (4)
C3—H30.9300C10—H100.9300
C4—C51.402 (4)N1—H10.86 (3)
C4—H40.9300N2—H20.83 (3)
C5—C61.373 (4)O1—H1A0.83 (4)
C5—S11.765 (3)O3—H3A0.82 (4)
C6—H60.9300O4—S11.436 (2)
C7—O21.231 (3)O5—S11.456 (2)
C7—O11.312 (3)O6—S11.433 (2)
C8—N11.323 (3)
C2—C1—C6118.9 (2)N1—C8—C8i126.0 (3)
C2—C1—C7120.6 (2)N2—C8—C8i126.4 (3)
C6—C1—C7120.6 (2)C10—C9—N1106.6 (3)
O3—C2—C3117.6 (2)C10—C9—H9126.7
O3—C2—C1122.4 (3)N1—C9—H9126.7
C3—C2—C1120.0 (3)C9—C10—N2108.2 (3)
C4—C3—C2120.1 (2)C9—C10—H10125.9
C4—C3—H3119.9N2—C10—H10125.9
C2—C3—H3119.9C8—N1—C9109.3 (3)
C3—C4—C5120.6 (3)C8—N1—H1123 (2)
C3—C4—H4119.7C9—N1—H1128 (2)
C5—C4—H4119.7C8—N2—C10108.2 (3)
C6—C5—C4119.6 (3)C8—N2—H2127 (2)
C6—C5—S1120.9 (2)C10—N2—H2124 (2)
C4—C5—S1119.5 (2)C7—O1—H1A116 (3)
C5—C6—C1120.8 (2)C2—O3—H3A108 (3)
C5—C6—H6119.6O6—S1—O4113.42 (15)
C1—C6—H6119.6O6—S1—O5110.64 (15)
O2—C7—O1122.4 (3)O4—S1—O5111.22 (13)
O2—C7—C1123.2 (2)O6—S1—C5106.95 (13)
O1—C7—C1114.4 (2)O4—S1—C5107.68 (12)
N1—C8—N2107.6 (2)O5—S1—C5106.56 (12)
C6—C1—C2—O3178.8 (2)C2—C1—C7—O1174.0 (2)
C7—C1—C2—O31.0 (4)C6—C1—C7—O16.1 (4)
C6—C1—C2—C30.9 (4)N1—C9—C10—N20.3 (4)
C7—C1—C2—C3179.3 (2)N2—C8—N1—C90.5 (3)
O3—C2—C3—C4179.0 (2)C8i—C8—N1—C9178.6 (3)
C1—C2—C3—C40.8 (4)C10—C9—N1—C80.1 (4)
C2—C3—C4—C50.1 (4)N1—C8—N2—C100.7 (3)
C3—C4—C5—C60.7 (4)C8i—C8—N2—C10178.4 (3)
C3—C4—C5—S1178.1 (2)C9—C10—N2—C80.6 (4)
C4—C5—C6—C10.5 (4)C6—C5—S1—O6121.9 (2)
S1—C5—C6—C1178.29 (18)C4—C5—S1—O656.9 (2)
C2—C1—C6—C50.3 (4)C6—C5—S1—O40.3 (3)
C7—C1—C6—C5179.9 (2)C4—C5—S1—O4179.1 (2)
C2—C1—C7—O25.1 (4)C6—C5—S1—O5119.7 (2)
C6—C1—C7—O2174.7 (2)C4—C5—S1—O561.5 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.82 (4)1.89 (4)2.624 (3)148 (4)
N1—H1···O50.86 (3)1.82 (4)2.661 (3)167 (3)
C9—H9···O6ii0.932.283.061 (4)141
C3—H3···O3iii0.932.503.423 (3)171
C6—H6···O1iv0.932.473.382 (3)168
O1—H1A···O4iv0.83 (4)1.87 (4)2.681 (3)166 (4)
N2—H2···O5i0.83 (3)2.10 (3)2.849 (3)151 (3)
N2—H2···O2v0.83 (3)2.40 (3)2.934 (3)123 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+2; (iv) x, y, z+2; (v) x+1, y, z1.
(II) 2,2'-bisbenzimidazolium bis(3-carboxy-4-hydroxybenzenesulfonate) trihydrate top
Crystal data top
C14H12N42+·2C7H5O6S·3H2OF(000) = 1504
Mr = 724.66Dx = 1.556 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5450 reflections
a = 25.0519 (9) Åθ = 2.2–27.5°
b = 7.3158 (3) ŵ = 0.26 mm1
c = 17.0309 (6) ÅT = 295 K
β = 97.553 (3)°Plate, colourless
V = 3094.3 (2) Å30.30 × 0.20 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3008 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
0.3° wide ω exposures scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 3030
Tmin = 0.918, Tmax = 0.990k = 98
14378 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0706P)2 + 1.3243P]
where P = (Fo2 + 2Fc2)/3
3008 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H12N42+·2C7H5O6S·3H2OV = 3094.3 (2) Å3
Mr = 724.66Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.0519 (9) ŵ = 0.26 mm1
b = 7.3158 (3) ÅT = 295 K
c = 17.0309 (6) Å0.30 × 0.20 × 0.04 mm
β = 97.553 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2489 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.990Rint = 0.032
14378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.29 e Å3
3008 reflectionsΔρmin = 0.28 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.141309 (18)0.45439 (6)0.27209 (3)0.03440 (17)
C10.22878 (7)0.5132 (3)0.48699 (11)0.0342 (4)
C20.28051 (8)0.4665 (3)0.47119 (12)0.0393 (5)
C30.28885 (8)0.4173 (3)0.39496 (13)0.0503 (6)
H30.32330.38740.38460.060*
C40.24680 (8)0.4126 (3)0.33488 (12)0.0456 (5)
H40.25270.37930.28400.055*
C50.19495 (7)0.4577 (3)0.35011 (11)0.0342 (4)
C60.18605 (7)0.5073 (3)0.42513 (11)0.0335 (4)
H60.15140.53700.43490.040*
C70.21986 (8)0.5660 (3)0.56797 (11)0.0372 (4)
C80.00005 (7)0.7961 (3)0.29240 (11)0.0355 (4)
C90.02778 (7)0.8024 (3)0.42028 (11)0.0338 (4)
C100.02588 (7)0.7454 (3)0.40907 (11)0.0359 (4)
C110.05306 (8)0.6999 (3)0.47238 (13)0.0452 (5)
H110.08870.66090.46490.054*
C120.02463 (9)0.7154 (3)0.54616 (13)0.0500 (5)
H120.04140.68670.59020.060*
C130.02915 (9)0.7734 (3)0.55736 (13)0.0487 (5)
H130.04700.78160.60870.058*
C140.05638 (8)0.8183 (3)0.49569 (12)0.0415 (5)
H140.09200.85720.50370.050*
N10.04191 (6)0.8334 (2)0.34586 (9)0.0357 (4)
H10.0711 (8)0.882 (3)0.3340 (13)0.043*
N20.04156 (7)0.7451 (2)0.32836 (10)0.0388 (4)
H20.0720 (9)0.711 (3)0.3053 (14)0.047*
O10.16956 (6)0.6071 (2)0.57491 (9)0.0506 (4)
H1A0.1677 (11)0.629 (4)0.6211 (18)0.076*
O20.25576 (6)0.5714 (2)0.62342 (8)0.0515 (4)
O30.32400 (6)0.4660 (3)0.52733 (10)0.0544 (4)
H3A0.3125 (13)0.499 (4)0.568 (2)0.082*
O40.14455 (5)0.6227 (2)0.22734 (8)0.0457 (4)
O50.15031 (6)0.29626 (19)0.22315 (8)0.0443 (4)
O60.09190 (6)0.4432 (2)0.30659 (9)0.0522 (4)
O70.13160 (6)0.9671 (2)0.29919 (11)0.0520 (4)
H7A0.1373 (12)1.063 (4)0.2761 (18)0.078*
H7B0.1523 (12)0.887 (4)0.2903 (18)0.078*
O80.00000.2042 (4)0.25000.0671 (7)
H8A0.0289 (12)0.265 (5)0.236 (2)0.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0363 (3)0.0435 (3)0.0233 (3)0.00036 (19)0.00351 (18)0.00129 (18)
C10.0391 (10)0.0369 (10)0.0265 (10)0.0024 (8)0.0042 (8)0.0042 (8)
C20.0352 (10)0.0473 (11)0.0348 (11)0.0010 (8)0.0021 (8)0.0042 (8)
C30.0362 (11)0.0723 (15)0.0433 (13)0.0106 (10)0.0090 (9)0.0016 (11)
C40.0441 (11)0.0629 (14)0.0308 (11)0.0081 (10)0.0087 (9)0.0042 (9)
C50.0375 (10)0.0391 (10)0.0259 (10)0.0004 (7)0.0041 (8)0.0035 (7)
C60.0341 (9)0.0404 (10)0.0266 (10)0.0014 (7)0.0056 (8)0.0041 (8)
C70.0396 (10)0.0445 (11)0.0272 (10)0.0047 (8)0.0030 (8)0.0053 (8)
C80.0361 (9)0.0376 (10)0.0326 (10)0.0002 (8)0.0038 (8)0.0001 (8)
C90.0344 (9)0.0358 (10)0.0319 (10)0.0011 (7)0.0067 (8)0.0001 (8)
C100.0394 (10)0.0366 (10)0.0318 (10)0.0024 (8)0.0058 (8)0.0019 (8)
C110.0455 (11)0.0490 (12)0.0429 (12)0.0054 (9)0.0127 (9)0.0006 (10)
C120.0598 (13)0.0549 (13)0.0385 (12)0.0020 (10)0.0185 (10)0.0026 (10)
C130.0602 (13)0.0551 (13)0.0294 (11)0.0000 (10)0.0007 (9)0.0004 (9)
C140.0415 (10)0.0454 (11)0.0361 (11)0.0008 (9)0.0007 (8)0.0004 (9)
N10.0325 (8)0.0432 (9)0.0319 (9)0.0032 (7)0.0058 (7)0.0018 (7)
N20.0350 (8)0.0469 (10)0.0335 (9)0.0071 (7)0.0013 (7)0.0015 (7)
O10.0433 (8)0.0845 (12)0.0244 (7)0.0049 (8)0.0056 (6)0.0032 (8)
O20.0459 (8)0.0761 (11)0.0305 (8)0.0030 (7)0.0027 (6)0.0017 (7)
O30.0356 (8)0.0847 (12)0.0412 (9)0.0021 (7)0.0019 (7)0.0016 (8)
O40.0491 (8)0.0461 (8)0.0399 (8)0.0036 (6)0.0013 (6)0.0094 (7)
O50.0584 (8)0.0442 (8)0.0301 (7)0.0011 (6)0.0056 (6)0.0032 (6)
O60.0398 (8)0.0841 (12)0.0334 (8)0.0056 (7)0.0076 (6)0.0024 (7)
O70.0432 (8)0.0480 (10)0.0665 (11)0.0027 (7)0.0139 (8)0.0055 (8)
O80.0720 (17)0.0694 (17)0.0562 (16)0.0000.0050 (13)0.000
Geometric parameters (Å, º) top
S1—O61.4406 (15)C9—N11.379 (2)
S1—O41.4559 (15)C9—C141.391 (3)
S1—O51.4606 (14)C9—C101.396 (3)
S1—C51.7614 (18)C10—N21.379 (3)
C1—C21.400 (3)C10—C111.389 (3)
C1—C61.401 (2)C11—C121.365 (3)
C1—C71.477 (3)C11—H110.9300
C2—O31.352 (2)C12—C131.401 (3)
C2—C31.389 (3)C12—H120.9300
C3—C41.369 (3)C13—C141.366 (3)
C3—H30.9300C13—H130.9300
C4—C51.397 (3)C14—H140.9300
C4—H40.9300N1—H10.86 (2)
C5—C61.374 (3)N2—H20.85 (2)
C6—H60.9300O1—H1A0.81 (3)
C7—O21.216 (2)O3—H3A0.83 (3)
C7—O11.316 (2)O7—H7A0.82 (3)
C8—N11.326 (2)O7—H7B0.81 (3)
C8—N21.328 (3)O8—H8A0.86 (3)
C8—C8i1.444 (4)
O6—S1—O4111.82 (9)N2—C10—C11131.95 (18)
O6—S1—O5113.14 (9)N2—C10—C9106.26 (17)
O4—S1—O5110.35 (8)C11—C10—C9121.79 (18)
O6—S1—C5107.73 (9)C12—C11—C10116.39 (19)
O4—S1—C5107.07 (8)C12—C11—H11121.8
O5—S1—C5106.36 (9)C10—C11—H11121.8
C2—C1—C6118.90 (17)C11—C12—C13121.8 (2)
C2—C1—C7120.05 (17)C11—C12—H12119.1
C6—C1—C7121.06 (17)C13—C12—H12119.1
O3—C2—C3117.00 (18)C14—C13—C12122.5 (2)
O3—C2—C1123.03 (18)C14—C13—H13118.8
C3—C2—C1119.97 (18)C12—C13—H13118.8
C4—C3—C2120.63 (19)C13—C14—C9116.18 (18)
C4—C3—H3119.7C13—C14—H14121.9
C2—C3—H3119.7C9—C14—H14121.9
C3—C4—C5119.87 (19)C8—N1—C9108.73 (16)
C3—C4—H4120.1C8—N1—O7119.61 (13)
C5—C4—H4120.1C9—N1—O7131.52 (12)
C6—C5—C4120.23 (17)C8—N1—H1123.1 (14)
C6—C5—S1120.26 (14)C9—N1—H1127.8 (15)
C4—C5—S1119.50 (14)C8—N2—C10108.75 (16)
C5—C6—C1120.40 (17)C8—N2—H2125.4 (16)
C5—C6—H6119.8C10—N2—H2125.7 (16)
C1—C6—H6119.8C7—O1—H1A108.1 (19)
O2—C7—O1122.82 (18)C2—O3—H3A105 (2)
O2—C7—C1123.11 (18)S1—O4—O7120.51 (8)
O1—C7—C1114.07 (16)S1—O6—O8125.18 (9)
N1—C8—N2109.84 (17)N1—O7—O487.23 (7)
N1—C8—C8i125.5 (2)N1—O7—H7A131 (2)
N2—C8—C8i124.4 (2)O4—O7—H7A121 (2)
N1—C9—C14132.19 (17)N1—O7—H7B112 (2)
N1—C9—C10106.40 (16)H7A—O7—H7B111 (3)
C14—C9—C10121.41 (18)O6—O8—H8A112 (2)
C6—C1—C2—O3179.14 (18)C9—C10—C11—C120.6 (3)
C7—C1—C2—O30.3 (3)C10—C11—C12—C130.3 (3)
C6—C1—C2—C30.7 (3)C11—C12—C13—C140.2 (4)
C7—C1—C2—C3179.81 (19)C12—C13—C14—C90.3 (3)
O3—C2—C3—C4179.3 (2)N1—C9—C14—C13179.3 (2)
C1—C2—C3—C40.5 (3)C10—C9—C14—C130.6 (3)
C2—C3—C4—C50.1 (3)N2—C8—N1—C91.1 (2)
C3—C4—C5—C60.1 (3)C8i—C8—N1—C9174.22 (11)
C3—C4—C5—S1179.08 (17)N2—C8—N1—O7175.12 (13)
O6—S1—C5—C620.47 (19)C8i—C8—N1—O79.51 (18)
O4—S1—C5—C699.96 (17)C14—C9—N1—C8179.3 (2)
O5—S1—C5—C6142.05 (16)C10—C9—N1—C80.6 (2)
O6—S1—C5—C4160.58 (17)C14—C9—N1—O75.0 (3)
O4—S1—C5—C478.99 (18)C10—C9—N1—O7175.03 (13)
O5—S1—C5—C438.99 (18)N1—C8—N2—C101.2 (2)
C4—C5—C6—C10.1 (3)C8i—C8—N2—C10174.23 (12)
S1—C5—C6—C1178.87 (14)C11—C10—N2—C8178.4 (2)
C2—C1—C6—C50.5 (3)C9—C10—N2—C80.8 (2)
C7—C1—C6—C5179.95 (18)O6—S1—O4—O754.28 (11)
C2—C1—C7—O20.1 (3)O5—S1—O4—O7178.86 (8)
C6—C1—C7—O2179.39 (18)C5—S1—O4—O763.50 (11)
C2—C1—C7—O1179.84 (18)O4—S1—O6—O8106.13 (12)
C6—C1—C7—O10.7 (3)O5—S1—O6—O819.20 (14)
N1—C9—C10—N20.1 (2)C5—S1—O6—O8136.48 (10)
C14—C9—C10—N2179.96 (17)C8—N1—O7—O467.69 (15)
N1—C9—C10—C11179.18 (18)C9—N1—O7—O4117.03 (17)
C14—C9—C10—C110.8 (3)S1—O4—O7—N150.37 (10)
N2—C10—C11—C12179.6 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5ii0.81 (3)1.93 (3)2.725 (2)169 (3)
N2—H2···O4i0.85 (2)1.94 (2)2.778 (2)169 (2)
O8—H8A···O6i0.86 (3)2.10 (3)2.950 (2)171 (3)
O3—H3A···O7iii0.83 (3)2.51 (3)3.057 (2)125 (3)
O7—H7B···O2iii0.81 (3)2.58 (3)2.967 (2)111 (2)
C14—H14···O3iii0.932.583.455 (3)156
O7—H7A···O5iv0.82 (3)1.98 (3)2.803 (2)178 (3)
C12—H12···O6v0.932.493.404 (3)169
N1—H1···O70.86 (2)1.81 (2)2.666 (2)174 (2)
O3—H3A···O20.83 (3)1.88 (3)2.633 (2)151 (3)
O7—H7B···O40.81 (3)2.21 (3)2.838 (2)135 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x, y+1, z; (v) x, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC6H8N42+·2C7H5O6SC14H12N42+·2C7H5O6S·3H2O
Mr570.5724.66
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)297295
a, b, c (Å)5.4296 (5), 8.2995 (7), 12.7083 (11)25.0519 (9), 7.3158 (3), 17.0309 (6)
α, β, γ (°)85.961 (2), 88.895 (2), 89.573 (1)90, 97.553 (3), 90
V3)571.13 (9)3094.3 (2)
Z14
Radiation typeMo KαMo Kα
µ (mm1)0.310.26
Crystal size (mm)0.20 × 0.16 × 0.040.30 × 0.20 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Multi-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.931, 0.9880.918, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6501, 2451, 1758 14378, 3008, 2489
Rint0.0450.032
(sin θ/λ)max1)0.6390.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.146, 1.10 0.039, 0.118, 1.07
No. of reflections24513008
No. of parameters184243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.300.29, 0.28

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry of the two title compounds (Å, °) top
D—H···AD—HH···AD···AD—H···A
(I)
N1–H1···O50.86 (4)1.82 (4)2.660 (3)167 (3)
N2–H2···O5i0.83 (3)2.10 (3)2.849 (3)150 (3)
N2–H2···O2ii0.83 (3)2.40 (4)2.934 (3)123 (3)
O1–H1A···O4iii0.83 (4)1.87 (4)2.681 (3)166 (4)
O3–H3A···O30.83 (4)1.89 (4)2.624 (3)148 (4)
C3–H3···O3iv0.932.503.424 (4)171
C6–H6···O1iii0.932.473.382 (4)168
C9–H9···O6v0.932.283.061 (4)141
(II)
N1–H1···O70.862 (19)1.805 (19)2.664 (2)174 (2)
N2–H2···O4vi0.846 (19)1.940 (19)2.775 (2)169 (2)
O1–H1A···O5vii0.82 (2)1.92 (2)2.723 (2)167 (3)
O3–H3A···O20.83 (3)1.87 (3)2.632 (2)152 (3)
O3–H3A···O7viii0.83 (3)2.51 (3)3.055 (3)124 (3)
O7–H7A···O5ix0.82 (2)1.99 (2)2.805 (2)178 (4)
O7–H7B···O40.82 (3)2.21 (2)2.836 (2)134 (3)
O7–H7B···O2viii0.82 (3)2.57 (3)2.967 (2)112 (2)
O8–H8A···O6vi0.85 (3)2.11 (3)2.950 (2)171 (3)
C12–H12···O6x0.932.483.402 (3)169
C14–H14···O3viii0.932.583.454 (3)156
Symmetry codes: (i) 2-x, -y, 1-z; (ii) 1+x, y, -1+z; (iii) -x, -y, 2-z; (iv) 2-x, 1-y, 2-z; (v) 1-x, 1-y, 1-z; (vi) -x, y, 1/2-z; (vii) x, 1-y, 1/2+z; (viii) 1/2-x, 3/2-y, 1-z; (ix) x, 1+y, z; (x) -x, 1-y, 1-z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds