Download citation
Download citation
link to html
In the solid state, the title compound, C13H13NO, exists in its keto form rather than in the enol form. The pyrrole NH group participates in an intermolecular hydrogen bond of the N—H...O type, leading to the formation of infinite chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801005001/tk6011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801005001/tk6011Isup2.hkl
Contains datablock I

CCDC reference: 162835

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.062
  • wR factor = 0.194
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

Pyrrolo[b]tropones (Nozoe et al., 1954) are isoelectronic with 8-quinolinols. 3-Phenylpyrrolo[2,3-b]tropone (Kubo et al., 2001) gave a dark-purple coloration when treated with aqueous ferric chloride in methanol and the color fades upon addition of mineral acid. This suggests that pyrrolo[2,3-b]tropones can be used as an analytical reagent for metal cations. 3-Phenylpyrrolo[2,3-b]tropone exists as the keto tautomer the in solid state (Kubo et al., 2001) and we now report the structure of the title compound, (I), in order to determine its form.

In (I), the C—C, C—O and C—N bond lengths of the pyrrolotropone ring are similar to those found in unsubstituted tropone (Barrow et al., 1973), unsubstituted pyrrole (Goddard et al., 1997), and 3-phenylpyrrolo[2,3-b]tropone (Kubo et al., 2001). The objective location of the H1 atom bonded to N1, rather than to the O1 atom, as well as the tropone-like distribution of bonds, allows the unambiguous assignment of the keto form (I) rather than the enol form (I').

The pyrrole NH group participates in an intermolecular hydrogen bond of the N—H.·O type: N1—H1 0.91 (3), N1.·O1i 2.781 (4) and H1.·O1i 1.89 (4) Å; symmetry code: (i) 2 - x, 1 - y, 1 - z. The hydrogen-bonding scheme links molecules into infinite chains orientated along a bisector between the the b and c axes of the unit cell. A similar mode of association was found in the structure of 3-phenylpyrrolo[2,3-b]tropone (Kubo et al., 2001).

Experimental top

The title compound, (I), was prepared by condensation of 2-hydrazinotropone with cyclohexanone accompanied by cyclization. The single crystals of (I) were obtained by recrystallization from a mixture of ethyl acetate and hexane.

Refinement top

All C-bound H atoms were included in the refinement at calculated positions as riding models with C—H distances set to 0.93 Å for aromatic and 0.97 Å for CH2– bonds. The H atom of the NH group was located from a difference syntheses and both positional and displacement parameters were refined for this atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal_GX (Hall & du Boulay, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids (Johnson, 1976).
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the c axis. Dotted lines represent hydrogen bonds.
(I) top
Crystal data top
C13H13NOF(000) = 424
Mr = 199.24Dx = 1.267 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.7107 Å
a = 8.778 (2) ÅCell parameters from 16 reflections
b = 15.3778 (19) Åθ = 8.9–18.2°
c = 8.442 (2) ŵ = 0.08 mm1
β = 113.590 (18)°T = 296 K
V = 1044.3 (4) Å3Prism, yellow
Z = 40.23 × 0.13 × 0.13 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
828 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 28.0°, θmin = 2.6°
ω–2θ scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.962, Tmax = 0.999l = 1011
2677 measured reflections3 standard reflections every 120 min
2519 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: mixed
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0777P)2]
where P = (Fo2 + 2Fc2)/3
2519 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H13NOV = 1044.3 (4) Å3
Mr = 199.24Z = 4
Monoclinic, P21/aMo Kα radiation
a = 8.778 (2) ŵ = 0.08 mm1
b = 15.3778 (19) ÅT = 296 K
c = 8.442 (2) Å0.23 × 0.13 × 0.13 mm
β = 113.590 (18)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
828 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.059
Tmin = 0.962, Tmax = 0.9993 standard reflections every 120 min
2677 measured reflections intensity decay: 0.6%
2519 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.20 e Å3
2519 reflectionsΔρmin = 0.24 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8866 (3)0.47307 (18)0.6722 (3)0.0523 (7)
O10.8557 (3)0.58737 (16)0.4107 (3)0.0838 (9)
C10.7595 (4)0.5952 (2)0.4868 (4)0.0588 (9)
C20.7684 (4)0.5361 (2)0.6203 (4)0.0500 (8)
C30.6758 (4)0.5282 (2)0.7237 (4)0.0516 (8)
C40.5378 (4)0.5784 (3)0.7150 (5)0.0655 (10)
H40.48640.56090.78700.079*
C50.4711 (4)0.6489 (3)0.6148 (5)0.0689 (10)
H50.37990.67410.62680.083*
C60.5230 (4)0.6883 (2)0.4956 (4)0.0676 (10)
H60.46510.73860.44530.081*
C70.6434 (4)0.6659 (2)0.4407 (4)0.0653 (10)
H70.65210.70320.35800.078*
C80.8752 (4)0.4257 (2)0.8049 (4)0.0520 (8)
C90.7453 (4)0.4580 (2)0.8372 (4)0.0553 (9)
C100.6976 (5)0.4197 (3)0.9737 (4)0.0717 (10)
H10A0.58850.39330.91940.086*
H10B0.69070.46571.04910.086*
C110.8205 (6)0.3520 (3)1.0807 (5)0.0959 (14)
H11A0.90620.38121.17730.115*
H11B0.76310.31261.12800.115*
C120.9011 (6)0.3004 (3)0.9919 (5)0.1015 (15)
H12A0.81850.26250.91010.122*
H12B0.98390.26371.07630.122*
C130.9855 (4)0.3520 (2)0.8948 (4)0.0621 (9)
H13A1.09210.37380.97530.075*
H13B1.00420.31490.81140.075*
H10.963 (4)0.458 (2)0.629 (4)0.080 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0469 (16)0.0591 (17)0.0578 (17)0.0025 (15)0.0282 (14)0.0001 (15)
O10.0821 (18)0.0977 (19)0.102 (2)0.0229 (15)0.0681 (17)0.0341 (16)
C10.050 (2)0.066 (2)0.066 (2)0.0004 (19)0.0287 (18)0.0047 (19)
C20.0423 (17)0.0536 (19)0.056 (2)0.0035 (18)0.0217 (15)0.0046 (17)
C30.0502 (18)0.060 (2)0.052 (2)0.0061 (18)0.0279 (16)0.0071 (18)
C40.059 (2)0.083 (3)0.066 (2)0.002 (2)0.0376 (19)0.010 (2)
C50.064 (2)0.083 (3)0.068 (2)0.009 (2)0.035 (2)0.006 (2)
C60.054 (2)0.074 (2)0.070 (2)0.0123 (19)0.020 (2)0.003 (2)
C70.059 (2)0.067 (2)0.072 (2)0.006 (2)0.028 (2)0.015 (2)
C80.054 (2)0.055 (2)0.0496 (19)0.0090 (17)0.0241 (16)0.0038 (17)
C90.057 (2)0.066 (2)0.053 (2)0.0098 (19)0.0322 (17)0.0071 (18)
C100.078 (3)0.087 (3)0.062 (2)0.005 (2)0.040 (2)0.001 (2)
C110.114 (3)0.103 (3)0.087 (3)0.000 (3)0.057 (3)0.021 (3)
C120.133 (4)0.095 (3)0.099 (3)0.021 (3)0.069 (3)0.032 (3)
C130.056 (2)0.063 (2)0.064 (2)0.0055 (19)0.0216 (18)0.0009 (19)
Geometric parameters (Å, º) top
N1—C21.358 (4)C7—H70.9300
N1—C81.374 (4)C8—C91.367 (4)
N1—H10.91 (3)C8—C131.487 (4)
O1—C11.254 (4)C9—C101.495 (4)
C1—C21.426 (4)C10—C111.511 (5)
C1—C71.432 (4)C10—H10A0.9700
C2—C31.416 (4)C10—H10B0.9700
C3—C41.414 (4)C11—C121.455 (5)
C3—C91.410 (4)C11—H11A0.9700
C4—C51.356 (5)C11—H11B0.9700
C4—H40.9300C12—C131.528 (5)
C5—C61.398 (4)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.358 (4)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C2—N1—C8110.2 (3)C8—C9—C3108.1 (3)
C2—N1—H1130 (2)C8—C9—C10121.6 (3)
C8—N1—H1120 (2)C3—C9—C10130.3 (3)
O1—C1—C2120.5 (3)C9—C10—C11112.3 (3)
O1—C1—C7119.1 (3)C9—C10—H10A109.2
C2—C1—C7120.4 (3)C11—C10—H10A109.2
N1—C2—C3107.0 (3)C9—C10—H10B109.2
N1—C2—C1120.2 (3)C11—C10—H10B109.2
C3—C2—C1132.8 (3)H10A—C10—H10B107.9
C9—C3—C4125.6 (3)C12—C11—C10116.5 (3)
C9—C3—C2106.6 (3)C12—C11—H11A108.2
C4—C3—C2127.7 (3)C10—C11—H11A108.2
C5—C4—C3128.1 (3)C12—C11—H11B108.2
C5—C4—H4116.0C10—C11—H11B108.2
C3—C4—H4116.0H11A—C11—H11B107.3
C4—C5—C6127.7 (3)C11—C12—C13115.7 (3)
C4—C5—H5116.2C11—C12—H12A108.4
C6—C5—H5116.2C13—C12—H12A108.4
C7—C6—C5131.2 (3)C11—C12—H12B108.4
C7—C6—H6114.4C13—C12—H12B108.4
C5—C6—H6114.4H12A—C12—H12B107.4
C6—C7—C1131.8 (3)C8—C13—C12108.2 (3)
C6—C7—H7114.1C8—C13—H13A110.1
C1—C7—H7114.1C12—C13—H13A110.1
C9—C8—N1108.0 (3)C8—C13—H13B110.1
C9—C8—C13126.9 (3)C12—C13—H13B110.1
N1—C8—C13125.1 (3)H13A—C13—H13B108.4
C8—N1—C2—C30.6 (3)C2—N1—C8—C91.0 (3)
C8—N1—C2—C1178.2 (3)C2—N1—C8—C13179.4 (3)
O1—C1—C2—N13.1 (5)N1—C8—C9—C31.0 (3)
C7—C1—C2—N1175.2 (3)C13—C8—C9—C3179.5 (3)
O1—C1—C2—C3178.5 (3)N1—C8—C9—C10179.1 (3)
C7—C1—C2—C33.2 (6)C13—C8—C9—C100.4 (5)
N1—C2—C3—C90.0 (3)C4—C3—C9—C8179.3 (3)
C1—C2—C3—C9178.6 (3)C2—C3—C9—C80.6 (3)
N1—C2—C3—C4178.7 (3)C4—C3—C9—C100.8 (6)
C1—C2—C3—C42.8 (6)C2—C3—C9—C10179.5 (3)
C9—C3—C4—C5176.5 (3)C8—C9—C10—C117.3 (5)
C2—C3—C4—C55.1 (6)C3—C9—C10—C11172.6 (3)
C3—C4—C5—C60.3 (6)C9—C10—C11—C1233.0 (5)
C4—C5—C6—C74.1 (7)C10—C11—C12—C1352.8 (5)
C5—C6—C7—C10.9 (6)C9—C8—C13—C1216.7 (5)
O1—C1—C7—C6177.4 (4)N1—C8—C13—C12162.8 (3)
C2—C1—C7—C64.2 (6)C11—C12—C13—C841.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (3)1.89 (4)2.781 (4)166.53
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H13NO
Mr199.24
Crystal system, space groupMonoclinic, P21/a
Temperature (K)296
a, b, c (Å)8.778 (2), 15.3778 (19), 8.442 (2)
β (°) 113.590 (18)
V3)1044.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.13 × 0.13
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.962, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
2677, 2519, 828
Rint0.059
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.194, 0.94
No. of reflections2519
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, MolEN (Fair, 1990), SIR97 (Altomare et al., 1997), SHELXL97 (Sheldrick, 1997), Xtal_GX (Hall & du Boulay, 1995), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds