addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733

Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Corrigendum

crossmark logo

aBiophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands, bCenter for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel, Switzerland, cNanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels, Belgium, dDepartment of Physics and Energy, Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland, eAmsterdam Scientific Instruments, Postbus 41882, 1009 DB Amsterdam, The Netherlands, fCentres Científics i Tecnològics de la Universitat de Barcelona, University of Barcelona, Carrer de Lluís Solé i Sabaris, 1-3, Barcelona, Spain, and gBiology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
*Correspondence e-mail: tim.gruene@psi.ch, jp.abrahams@unibas.ch

(Received 10 August 2018; accepted 10 August 2018; online 30 October 2018)

Corrections are made to Table 1 in the article by van Genderen et al. [Acta Cryst. (2016[Genderen, E. van, Clabbers, M. T. B., Das, P. P., Stewart, A., Nederlof, I., Barentsen, K. C., Portillo, Q., Pannu, N. S., Nicolopoulos, S., Gruene, T. & Abrahams, J. P. (2016). Acta Cryst. A72, 236-242.]), A72, 236–242].

In the article by van Genderen et al. (2016[Genderen, E. van, Clabbers, M. T. B., Das, P. P., Stewart, A., Nederlof, I., Barentsen, K. C., Portillo, Q., Pannu, N. S., Nicolopoulos, S., Gruene, T. & Abrahams, J. P. (2016). Acta Cryst. A72, 236-242.]), the scattering factors used in the refinements and in the CIF file were for X-ray scattering rather than for electron scattering. The correct scattering factors have now been used and the statistics that were affected by this error (model statistics Rcomplete, R1 and wR2) have been recalculated.

This affects six entries in Table 1[link] of the original publication. The correct values are given here. The corrected CIF and supporting information are also made available.

Table 1
Corrected statistics

  Carbamazepine Nicotinic acid
Refinement statistics
Rcomplete 31.8 37.7
R1 (%) 27.9 34.1
wR2 (%) 55.2 60.1
†Luebben & Gruene (2015[Luebben, J. & Gruene, T. (2015). Proc. Natl Acad. Sci. USA, 112, 8999-9003.]).

Supporting information


Computing details top

For all structures, program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2016).

(carbamazepine_single) top
Crystal data top
C15H12N2OZ = 4
Mr = 236.27F(000) = 201
Monoclinic, P21/nDx = 1.326 Mg m3
a = 7.578 (12) ÅMonochromatic beam radiation, λ = 0.02508 Å
b = 11.176 (2) ŵ = 0.000 mm1
c = 13.991 (13) ÅT = 293 K
β = 93.08 (6)°Irregular flat disc, unknown
V = 1183 (2) Å30.001 × 0.001 × 0.000 mm
Data collection top
Single axis tomography holder
diffractometer
1071 independent reflections
Radiation source: tansmission electron microscope754 reflections with I > 2σ(I)
Detector resolution: 18.1818 pixels mm-1Rint = 0.084
rotation method with profile fitting scansθmax = 0.9°, θmin = 0.1°
Absorption correction: empirical (using intensity measurements)h = 77
k = 1313
2202 measured reflectionsl = 1616
Refinement top
Refinement on F2144 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.248H-atom parameters constrained
wR(F2) = 0.548 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 2.01(Δ/σ)max = 1.591
1071 reflectionsΔρmax = 0.28 e Å3
163 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.342 (4)0.6883 (10)0.5012 (13)0.029 (4)
O10.007 (4)0.8770 (11)0.4079 (14)0.041 (5)
N10.213 (3)0.7341 (10)0.4376 (12)0.034 (4)
C20.306 (4)0.6393 (14)0.5910 (15)0.044 (6)
H20.1894570.6321650.6085990.053*
N20.178 (3)0.9006 (11)0.5395 (14)0.035 (6)
H2A0.1296690.9665850.5556730.042*
H2B0.2658820.8720390.5739060.042*
C30.447 (4)0.6011 (13)0.6543 (16)0.042 (6)
H30.4247370.5672200.7131230.050*
C40.609 (4)0.6143 (11)0.6287 (15)0.043 (6)
H40.7007060.5912880.6713910.052*
C50.651 (4)0.6626 (12)0.5381 (15)0.038 (5)
H50.7686710.6703540.5230950.045*
C70.561 (4)0.7459 (13)0.3750 (16)0.042 (6)
H70.6624850.7919060.3714970.051*
C60.523 (4)0.6965 (10)0.4753 (14)0.033 (4)
C80.469 (4)0.7310 (11)0.2965 (16)0.036 (5)
H80.5155570.7630420.2419060.043*
C90.306 (4)0.6719 (11)0.2834 (14)0.035 (5)
C100.259 (4)0.6119 (12)0.1916 (15)0.046 (6)
H100.3394500.6124580.1437840.055*
C110.095 (5)0.5538 (13)0.1744 (15)0.049 (6)
H110.0657890.5159170.1165340.058*
C120.014 (4)0.5562 (13)0.2450 (14)0.048 (6)
H120.1171370.5120500.2335990.058*
C130.001 (4)0.6139 (13)0.3344 (15)0.043 (6)
H130.0902760.6144160.3775620.052*
C140.175 (3)0.6750 (10)0.3517 (13)0.028 (4)
C150.117 (4)0.8414 (11)0.4599 (15)0.030 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (10)0.003 (5)0.023 (7)0.007 (6)0.013 (6)0.004 (5)
O10.061 (15)0.023 (6)0.040 (10)0.017 (6)0.011 (9)0.016 (6)
N10.069 (11)0.009 (5)0.025 (7)0.018 (5)0.013 (7)0.005 (4)
C20.073 (17)0.030 (8)0.032 (10)0.000 (9)0.013 (10)0.016 (7)
N20.054 (17)0.017 (6)0.035 (9)0.016 (6)0.021 (9)0.011 (5)
C30.079 (17)0.019 (7)0.028 (10)0.002 (8)0.005 (10)0.002 (7)
C40.078 (16)0.008 (6)0.044 (10)0.012 (7)0.013 (10)0.004 (6)
C50.065 (12)0.015 (7)0.035 (9)0.007 (7)0.014 (8)0.004 (6)
C70.075 (16)0.021 (7)0.032 (8)0.009 (8)0.022 (8)0.003 (6)
C60.062 (10)0.002 (5)0.038 (9)0.009 (6)0.021 (8)0.004 (6)
C80.070 (14)0.011 (6)0.030 (8)0.002 (6)0.026 (8)0.003 (6)
C90.067 (13)0.008 (6)0.032 (8)0.004 (6)0.026 (8)0.011 (5)
C100.091 (17)0.019 (7)0.031 (9)0.008 (7)0.019 (9)0.015 (6)
C110.090 (18)0.025 (7)0.032 (11)0.008 (7)0.018 (10)0.024 (7)
C120.092 (18)0.016 (7)0.039 (10)0.007 (8)0.022 (10)0.020 (6)
C130.065 (14)0.029 (7)0.038 (9)0.005 (7)0.027 (9)0.024 (7)
C140.063 (13)0.005 (5)0.018 (7)0.015 (5)0.018 (6)0.004 (4)
C150.050 (14)0.003 (5)0.038 (10)0.004 (5)0.021 (9)0.005 (5)
Geometric parameters (Å, º) top
C1—N11.39 (3)C5—H50.9300
C1—C21.41 (2)C7—C81.28 (4)
C1—C61.44 (3)C7—C61.55 (2)
O1—C151.22 (4)C7—H70.9300
N1—C141.39 (3)C8—C91.40 (4)
N1—C151.45 (2)C8—H80.9300
C2—C31.42 (4)C9—C141.41 (2)
C2—H20.9300C9—C101.48 (3)
N2—C151.36 (3)C10—C111.41 (5)
N2—H2A0.8600C10—H100.9300
N2—H2B0.8600C11—C121.32 (3)
C3—C41.30 (3)C11—H110.9300
C3—H30.9300C12—C131.41 (3)
C4—C51.43 (2)C12—H120.9300
C4—H40.9300C13—C141.51 (4)
C5—C61.33 (4)C13—H130.9300
N1—C1—C2123 (2)C1—C6—C7118 (2)
N1—C1—C6117.7 (16)C7—C8—C9127.4 (17)
C2—C1—C6119 (2)C7—C8—H8116.3
C1—N1—C14119.0 (13)C9—C8—H8116.3
C1—N1—C15121.0 (18)C8—C9—C14123.0 (19)
C14—N1—C15120 (2)C8—C9—C10119.9 (18)
C1—C2—C3120 (3)C14—C9—C10117 (2)
C1—C2—H2120.2C11—C10—C9121.9 (19)
C3—C2—H2120.2C11—C10—H10119.0
C15—N2—H2A120.0C9—C10—H10119.0
C15—N2—H2B120.0C12—C11—C10116 (2)
H2A—N2—H2B120.0C12—C11—H11121.8
C4—C3—C2119 (2)C10—C11—H11121.8
C4—C3—H3120.5C11—C12—C13131 (3)
C2—C3—H3120.5C11—C12—H12114.5
C3—C4—C5123 (3)C13—C12—H12114.5
C3—C4—H4118.5C12—C13—C14111.7 (18)
C5—C4—H4118.5C12—C13—H13124.2
C6—C5—C4120 (3)C14—C13—H13124.2
C6—C5—H5120.0N1—C14—C9119 (2)
C4—C5—H5120.0N1—C14—C13119.5 (15)
C8—C7—C6128 (2)C9—C14—C13121.9 (18)
C8—C7—H7116.1O1—C15—N2123.3 (15)
C6—C7—H7116.1O1—C15—N1121 (2)
C5—C6—C1119.2 (17)N2—C15—N1115 (2)
C5—C6—C7122 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.062.915 (18)178
Symmetry code: (i) x, y+2, z+1.
(carbamazepine_5x-merged) top
Crystal data top
C15H12N2OZ = 4
Mr = 236.27F(000) = 201
Monoclinic, P21/nDx = 1.327 Mg m3
a = 7.576 (12) ÅMonochromatic beam radiation, λ = 0.02508 Å
b = 11.188 (2) ŵ = 0.000 mm1
c = 13.967 (13) ÅT = 293 K
β = 87.03 (6)°Not applicable, data merged from 5 xtals, unknown
V = 1182 (2) Å3
Data collection top
Single axis tomography holder
diffractometer
1880 independent reflections
Radiation source: tansmission electron microscope1157 reflections with I > 2σ(I)
Detector resolution: 18.1818 pixels mm-1Rint = 0.448
rotation method with profile fitting scansθmax = 0.9°, θmin = 0.1°
Absorption correction: empirical (using intensity measurements)h = 99
k = 013
6780 measured reflectionsl = 015
Refinement top
Refinement on F2144 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.396H-atom parameters constrained
wR(F2) = 0.699 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 2.44(Δ/σ)max = 0.874
1880 reflectionsΔρmax = 0.36 e Å3
163 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.349 (2)0.6897 (13)0.4992 (13)0.022 (3)
N10.207 (2)0.7358 (10)0.5597 (12)0.022 (3)
O10.009 (2)0.8762 (12)0.5913 (12)0.034 (4)
N20.179 (3)0.9013 (13)0.4585 (14)0.045 (6)
H2A0.1269620.9655490.4410310.053*
H2B0.2681230.8739840.4249030.053*
C20.305 (3)0.6408 (16)0.4092 (15)0.037 (4)
H20.1887210.6344990.3920240.044*
C30.446 (3)0.6025 (18)0.3478 (18)0.046 (5)
H30.4221240.5667990.2897840.055*
C40.616 (3)0.6161 (13)0.3704 (15)0.033 (4)
H40.7085000.5979960.3262210.040*
C50.651 (3)0.6586 (17)0.4630 (16)0.040 (5)
H50.7661290.6579550.4823930.048*
C60.520 (2)0.7005 (14)0.5245 (14)0.025 (3)
C70.573 (2)0.7410 (14)0.6169 (14)0.029 (4)
H70.6824720.7787790.6188330.035*
C80.475 (2)0.7281 (15)0.7029 (15)0.025 (4)
H80.5275540.7566110.7571240.030*
C90.300 (2)0.6755 (15)0.7189 (14)0.024 (3)
C100.258 (3)0.6148 (14)0.8050 (15)0.031 (4)
H100.3415910.6161300.8516730.037*
C110.108 (3)0.5553 (16)0.8249 (14)0.034 (4)
H110.0861720.5146610.8823880.040*
C120.012 (3)0.5583 (17)0.7542 (14)0.035 (4)
H120.1180580.5178820.7671240.042*
C130.007 (2)0.6136 (14)0.6682 (13)0.021 (4)
H130.0816210.6127530.6242810.025*
C140.175 (2)0.6747 (13)0.6492 (13)0.020 (3)
C150.116 (2)0.8397 (12)0.5432 (13)0.024 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (6)0.014 (7)0.031 (8)0.010 (5)0.012 (5)0.006 (5)
N10.023 (6)0.001 (5)0.040 (7)0.003 (4)0.016 (5)0.006 (4)
O10.031 (8)0.029 (7)0.041 (10)0.021 (5)0.028 (7)0.013 (5)
N20.054 (12)0.015 (7)0.059 (12)0.021 (7)0.048 (9)0.021 (6)
C20.034 (9)0.042 (11)0.032 (9)0.007 (7)0.013 (7)0.001 (6)
C30.046 (9)0.046 (11)0.043 (12)0.002 (7)0.025 (7)0.010 (8)
C40.042 (8)0.012 (8)0.042 (9)0.011 (6)0.029 (8)0.008 (6)
C50.032 (8)0.044 (11)0.040 (10)0.015 (7)0.030 (7)0.002 (7)
C60.020 (6)0.023 (8)0.031 (8)0.017 (5)0.013 (5)0.005 (5)
C70.020 (8)0.034 (9)0.030 (8)0.006 (6)0.014 (5)0.008 (5)
C80.004 (6)0.040 (9)0.029 (8)0.003 (5)0.007 (6)0.001 (6)
C90.010 (6)0.033 (8)0.029 (8)0.003 (5)0.008 (5)0.002 (6)
C100.034 (9)0.024 (8)0.032 (9)0.007 (6)0.011 (6)0.005 (6)
C110.039 (9)0.045 (10)0.016 (10)0.001 (7)0.014 (7)0.008 (7)
C120.031 (9)0.058 (11)0.013 (9)0.000 (7)0.021 (6)0.003 (6)
C130.010 (7)0.041 (9)0.010 (9)0.008 (6)0.010 (6)0.000 (6)
C140.005 (6)0.018 (7)0.036 (8)0.001 (5)0.007 (5)0.010 (5)
C150.029 (8)0.000 (6)0.040 (10)0.005 (5)0.027 (7)0.007 (5)
Geometric parameters (Å, º) top
C1—C61.37 (2)C5—H50.9300
C1—N11.43 (2)C6—C71.44 (3)
C1—C21.43 (3)C7—C81.39 (3)
N1—C151.379 (19)C7—H70.9300
N1—C141.43 (2)C8—C91.46 (2)
O1—C151.20 (2)C8—H80.9300
N2—C151.43 (2)C9—C141.39 (3)
N2—H2A0.8600C9—C101.40 (3)
N2—H2B0.8600C10—C111.34 (3)
C2—C31.40 (3)C10—H100.9300
C2—H20.9300C11—C121.38 (3)
C3—C41.35 (3)C11—H110.9300
C3—H30.9300C12—C131.35 (3)
C4—C51.41 (3)C12—H120.9300
C4—H40.9300C13—C141.46 (2)
C5—C61.36 (2)C13—H130.9300
C6—C1—N1120.6 (16)C6—C7—H7117.3
C6—C1—C2121.9 (17)C7—C8—C9128.1 (18)
N1—C1—C2117.2 (17)C7—C8—H8115.9
C15—N1—C1125.1 (13)C9—C8—H8115.9
C15—N1—C14119.0 (13)C14—C9—C10117.7 (17)
C1—N1—C14115.5 (12)C14—C9—C8122.8 (16)
C15—N2—H2A120.0C10—C9—C8119.3 (17)
C15—N2—H2B120.0C11—C10—C9125 (2)
H2A—N2—H2B120.0C11—C10—H10117.6
C3—C2—C1117 (2)C9—C10—H10117.6
C3—C2—H2121.6C10—C11—C12115.3 (19)
C1—C2—H2121.6C10—C11—H11122.4
C4—C3—C2122 (2)C12—C11—H11122.4
C4—C3—H3119.1C13—C12—C11127 (2)
C2—C3—H3119.1C13—C12—H12116.4
C3—C4—C5118.3 (19)C11—C12—H12116.4
C3—C4—H4120.9C12—C13—C14115.2 (18)
C5—C4—H4120.9C12—C13—H13122.4
C6—C5—C4122 (2)C14—C13—H13122.4
C6—C5—H5118.9C9—C14—N1121.1 (15)
C4—C5—H5118.9C9—C14—C13119.7 (16)
C5—C6—C1118.3 (19)N1—C14—C13119.1 (15)
C5—C6—C7116.4 (18)O1—C15—N1125.5 (14)
C1—C6—C7124.9 (16)O1—C15—N2121.2 (14)
C8—C7—C6125.3 (18)N1—C15—N2113.3 (14)
C8—C7—H7117.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.042.90 (2)176
Symmetry code: (i) x, y+2, z+1.
(nicotinic_acid_single) top
Crystal data top
C6H5NO2Z = 4
Mr = 123.11F(000) = 95
Monoclinic, P21/cDx = 1.426 Mg m3
a = 7.303 (11) ÅMonochromatic beam radiation, λ = 0.02508 Å
b = 11.693 (2) ŵ = 0.000 mm1
c = 7.33 (3) ÅT = 293 K
β = 113.68 (14)°Flat rectangular, with irregular borders, unknown
V = 573 (2) Å30.002 × 0.001 × 0.000 mm
Data collection top
Single axis tomography holder
diffractometer
503 independent reflections
Radiation source: tansmission electron microscope302 reflections with I > 2σ(I)
Detector resolution: 18.1818 pixels mm-1Rint = 0.071
rotation method with profile fitting scansθmax = 1.0°, θmin = 0.1°
Absorption correction: empirical (using intensity measurements)h = 55
k = 1515
953 measured reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.294H-atom parameters constrained
wR(F2) = 0.611 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 2.13(Δ/σ)max < 0.001
503 reflectionsΔρmax = 0.19 e Å3
38 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.751 (4)0.8887 (9)0.7043 (18)0.030 (3)*
C10.842 (4)0.7918 (9)0.7152 (19)0.032 (4)*
H10.9775390.7959180.7428350.038*
O10.801 (5)0.4845 (12)0.693 (2)0.054 (4)*
C20.759 (5)0.6823 (10)0.690 (2)0.032 (4)*
O21.068 (4)0.5888 (10)0.743 (2)0.044 (4)*
H21.1266570.5275020.7775260.065*
C30.539 (5)0.6779 (11)0.652 (2)0.031 (4)*
H30.4712180.6092200.6398070.037*
C40.452 (6)0.7759 (13)0.636 (3)0.053 (5)*
H40.3161860.7780210.6068820.064*
C50.558 (5)0.8794 (12)0.663 (2)0.039 (4)*
H50.4861310.9467800.6509250.047*
C60.874 (5)0.5751 (10)0.7066 (19)0.026 (3)*
Geometric parameters (Å, º) top
N1—C11.30 (3)O2—C61.34 (4)
N1—C51.32 (5)O2—H20.8200
C1—C21.39 (2)C3—C41.29 (3)
C1—H10.9300C3—H30.9300
O1—C61.17 (3)C4—C51.40 (3)
C2—C61.49 (3)C4—H40.9300
C2—C31.52 (5)C5—H50.9300
C1—N1—C5114.5 (16)C2—C3—H3122.2
N1—C1—C2128 (3)C3—C4—C5122 (3)
N1—C1—H1116.2C3—C4—H4119.0
C2—C1—H1116.2C5—C4—H4119.0
C1—C2—C6124 (3)N1—C5—C4125 (2)
C1—C2—C3115.1 (19)N1—C5—H5117.4
C6—C2—C3120.5 (15)C4—C5—H5117.4
C6—O2—H2109.5O1—C6—O2122 (2)
C4—C3—C2116 (2)O1—C6—C2122 (3)
C4—C3—H3122.2O2—C6—C2115.5 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.832.64 (2)167
Symmetry code: (i) x+2, y1/2, z+3/2.
(nicotinic_acid_2x-merged) top
Crystal data top
C6H5NO2Z = 4
Mr = 123.11F(000) = 95
Monoclinic, P21/cDx = 1.406 Mg m3
a = 7.41 (3) ÅMonochromatic beam radiation, λ = 0.02508 Å
b = 11.692 (2) ŵ = 0.000 mm1
c = 7.377 (11) ÅT = 293 K
β = 114.45 (14)°N/a, data merged from 2 crystals, n/a, data merged from 2 crystals
V = 581 (2) Å3
Data collection top
Single axis tomography holder
diffractometer
552 independent reflections
Radiation source: tansmission electron microscope303 reflections with I > 2σ(I)
Detector resolution: 18.1818 pixels mm-1Rint = 0.270
rotation method with profile fitting scansθmax = 1.0°, θmin = 0.1°
Absorption correction: empirical (using intensity measurements)h = 05
k = 150
1337 measured reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.321H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.648 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 2.08(Δ/σ)max < 0.001
552 reflectionsΔρmax = 0.22 e Å3
39 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.633 (4)0.5757 (10)0.2902 (18)0.020 (3)*
C10.661 (4)0.7921 (10)0.2828 (18)0.025 (4)*
H10.5287240.7959510.2617560.031*
O10.435 (5)0.5882 (11)0.253 (2)0.039 (4)*
HO0.3790220.5261410.2216780.026 (15)*
N10.761 (4)0.8903 (10)0.2927 (19)0.029 (4)*
O20.699 (6)0.4865 (15)0.305 (3)0.059 (5)*
C20.753 (5)0.6830 (11)0.303 (2)0.030 (4)*
C50.958 (5)0.8780 (13)0.331 (2)0.034 (4)*
H51.0350130.9404810.3294490.040*
C41.031 (6)0.7765 (14)0.368 (3)0.046 (5)*
H21.1691540.7775920.4273380.056*
C30.965 (5)0.6777 (12)0.346 (2)0.029 (4)*
H31.0379130.6113830.3553410.034*
Geometric parameters (Å, º) top
C6—O21.14 (3)N1—C51.38 (5)
C6—O11.38 (4)C2—C31.47 (5)
C6—C21.52 (3)C5—C41.29 (3)
C1—N11.35 (3)C5—H50.9300
C1—C21.42 (3)C4—C31.24 (3)
C1—H10.9300C4—H20.9300
O1—HO0.8200C3—H30.9300
O2—C6—O1120 (2)C3—C2—C6121.6 (15)
O2—C6—C2122 (3)C4—C5—N1117 (3)
O1—C6—C2117.9 (16)C4—C5—H5121.4
N1—C1—C2122 (3)N1—C5—H5121.4
N1—C1—H1118.9C3—C4—C5136 (4)
C2—C1—H1118.9C3—C4—H2111.8
C6—O1—HO109.5C5—C4—H2111.8
C1—N1—C5115.6 (17)C4—C3—C2108 (3)
C1—C2—C3119 (2)C4—C3—H3125.8
C1—C2—C6120 (3)C2—C3—H3125.8
 

Acknowledgements

The authors are grateful to Professor Ton Spek, Utrecht University, The Netherlands, for alerting them to this error.

References

First citationGenderen, E. van, Clabbers, M. T. B., Das, P. P., Stewart, A., Nederlof, I., Barentsen, K. C., Portillo, Q., Pannu, N. S., Nicolopoulos, S., Gruene, T. & Abrahams, J. P. (2016). Acta Cryst. A72, 236–242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuebben, J. & Gruene, T. (2015). Proc. Natl Acad. Sci. USA, 112, 8999–9003.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds