Download citation
Download citation
link to html
The crystal structure of the title compound, [NiCl(C12H8N2)2(CH4N2S)]2(NO3)­Cl·­2C2H6O, is formed by [Ni(phen)2(thio­urea)Cl]+ cations (phen = 1,10-phenanthroline), chloride and nitrate counter-ions, and ethanol solvate mol­ecules. The Ni atom is octahedrally coordinated to two bidentate phen ligands, a monodentate thio­urea and a chloride ion. Both the chloride and nitrate anions, which provide charge balance, are located at special positions on a twofold symmetry axis. Hydro­gen bonds play a key role in the packing and conformation of the cation and create a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014833/sx1095sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014833/sx1095Isup2.hkl
Contains datablock I

CCDC reference: 142737

Comment top

Although structures where Ni is coordinated by both thiourea and anionic ligands have already been reported in the literature (Lopez-Castro & Truter, 1963; Nardelli et al., 1966; Gasparri et al., 1969), the title compound, (I), is the only known Ni compound coordinated by thiourea and a neutral ligand; no other Ni compound of this type could be traced in the April 1999 release of the Cambridge Structural Database (CSD; 1999). \scheme

Compound (I) crystallizes in the polar space group Fdd2 with 16 C27H26Cl1.5N6.5NiO2.5S formula units per unit cell. The structure is composed of [Ni(phen)2(thiourea)Cl]+ cations, nitrate and chloride anions, and ethanol solvate molecules, in a 1:0.5:0.5:1 ratio. Each of the counter-ions is located on a twofold symmetry axis, thus halving their total number in the structure and allowing for the required charge balance.

The presence of a chloride ion in the coordination sphere of the Ni in (I) may play a role in the stabilization of the coordinated thiourea through the formation of an intramolecular hydrogen bond with one thiourea H atom (Table 2), and by reducing the formal charge of the complex. This phenomenon has also been observed in [Co(phen)(thiourea)(H2O)Cl2].(thiourea) (Suescun, Mariezcurrena & Mombrú, 1999). The coordination sphere around Ni is a distorted octahedron, with the equatorial plane defined by three N atoms (N11 from phen1, N21 and N22 from phen2), and a Cl atom (Cl1). The S (S31) and the remaining N atom from phen1 (N12) are located at apical positions. Table 1 shows all coordination distances and angles. The distortion becomes evident by examining the N11—Ni—N12 and N21—Ni—N22 angles, which are close to 80°. This is an usual feature in Ni-phen complexes that results from the rigid bite of the didentate phen ligand and from the Ni—N bond distances, which are close to 2.1 Å. The decrease of the N—Ni—N intramolecular angles from the expected 90° of regular octahedral coordination leads to an increase in the other N—Ni—Cl and N—Ni—S cis angles, the largest observed being Cl1—Ni1—S31 [100.02 (7)°]. The Ni1—S31 coordination distance is 2.464 (2) Å, similar to the values found in other Ni-thiourea compounds (Lopez-Castro & Truter, 1963; Nardelli et al., 1966; Gasparri et al., 1969).

Both phen molecules in the asymmetric unit of (I) are planar, with maximum deviations of 0.070 (9) Å for C12 in phen1 and 0.030 (9) Å for C24 in phen2. No mirror or C2 distortions from planarity are observed for these molecules in this complex (Frenz & Ibers, 1972; Nishigaki et al., 1978). The thiourea molecule is also planar, with the Cl atom located 0.12 (3) Å from the mean molecular plane; this allows us to describe Cl1 as forming a plane with the thiourea molecule, since the two ligands are connected into a closed loop by the intramolecular hydrogen bond (Table 2). The dihedral angle between the two phen ligands is 87.54 (9)°, similar to those in Ni(phen)32+ compounds (Marek et al., 1995; Decurtins et al., 1996; Suescun, Mombrú & Mariezcurrena, 1999). This value, combined with the position of the nearly planar thiourea–Cl pair, demonstrates that the ligands occupy nearly the same position as the third missing phenanthroline in Ni(phen)32+. The dihedral angles between the thiourea–Cl plane and phen1 and phen2 are 79.09 (18) and 75.61 (19)°, respectively. These values are quite comparable to those observed in other Ni(phen)32+ compounds (Marek et al., 1995; Decurtins et al., 1996; Suescun, Mombrú & Mariezcurrena, 1999).

The packing of the structure of (I) is mainly governed by electrostatic forces and hydrogen bonds between the nitrate, chloride, thiourea and ethanol moieties. Table 2 shows all intra- and intermolecular hydrogen bonds. No stacking interactions between phen ligands are observed.

Experimental top

The title compound was obtained together with [Ni(phen)3](NO3)2.thiourea·H2O, (II) (Suescun, Mombrú & Mariezcurrena, 1999), by preparing an aqueous hydrochloric acid solution (0.5M, 50 ml) containing Ni(NO3)2·6H2O (1 mmol) to which an equal volume of an ethanolic solution of 1,10-phenanthroline (2 mmol) and thiourea (2 mmol) was added. The light blue solution was allowed to rest. After a week, a crop of orange well shaped crystals of compound (II) began to grow, but it was not until three to four weeks had elapsed that the first blue octahedral crystals of compound (I) appeared.

Refinement top

In spite of the fact that the crystals showed no external evidence of any deviation from regularity, some ill-shaped diffraction maxima were observed in all the specimens checked. Although this did not prevent either data collection or the solution of the structure, it showed up in some difficulties in refinement. This was evidenced in the final R factor, as well as in the unusually high residual electron density around the nitrate ion and the ethanol solvate, which suggested disorder. Several attempts to refine a disordered model, which included additional positions for new water molecules as well as an alternate position for the ethanol molecule and an alternate distribution of the anions, did reduce the crystallographic residual, but also led to contacts with unacceptable molecular geometry. The disorder was therefore not included in the final refinement. Outside this disordered region, the final difference Fourier map appeared essentially featureless, with extreme values of residual electron density not larger than 0.90 e Å−3. In order to prevent unrealistic shifts for groups positioned on crystallographic symmetry elements and in the disordered region, some metric as well as vibrational restraints were applied. The structure was solved by direct methods, all non-H atoms being located in the initial E-map. The model was refined by full-matrix least squares placing all H atoms in suitable geometrical positions and allowing them to ride with Uiso = 1.2Ueq of the parent atom.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1995); software used to prepare material for publication: PLATON98 (Spek, 1990).

Figures top
[Figure 1] Fig. 1. ZORTEP (Zsolnai & Pritzkow, 1995) drawing showing the [Ni(phen)2(thiourea)Cl]+ cation of (I), one nitrate and one chloride anion, and an ethanol molecule, together with the atom-labelling scheme. The hydrogen bond connecting the thiourea and the coordinated Cl atom is marked as a dashed line, as is that connecting the nitrate and the ethanol. Displacement ellipsoids are drawn at the 30% probability level. Most H atoms are excluded for clarity and the remainder are shown as spheres of arbitrary radii.
Bis[chlorobis(1,10-phenanthroline-N,N')(thiourea-S)nickel(II)]chloride nitrate diethanol solvate top
Crystal data top
[Ni(CH4N2S)(C12H8N2)2Cl]2·Cl·NO3·2C2H6ODx = 1.467 Mg m3
Mr = 1250.98Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, Fdd2Cell parameters from 25 reflections
a = 22.813 (4) Åθ = 19.3–21.9°
b = 29.024 (6) ŵ = 0.94 mm1
c = 17.113 (4) ÅT = 293 K
V = 11331 (4) Å3Octahedral, blue
Z = 80.33 × 0.24 × 0.20 mm
F(000) = 5168
Data collection top
Rigaku AFC-7S
diffractometer
3013 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
θ/2θ scansh = 2929
Absorption correction: ψ-scan
MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993)
k = 2537
Tmin = 0.747, Tmax = 0.834l = 1522
3588 measured reflections3 standard reflections every 150 reflections
3571 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.209 w = 1/[σ2(Fo2) + (0.1559P)2 + 21.2516P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3571 reflectionsΔρmax = 2.29 e Å3
357 parametersΔρmin = 1.07 e Å3
85 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
[Ni(CH4N2S)(C12H8N2)2Cl]2·Cl·NO3·2C2H6OV = 11331 (4) Å3
Mr = 1250.98Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 22.813 (4) ŵ = 0.94 mm1
b = 29.024 (6) ÅT = 293 K
c = 17.113 (4) Å0.33 × 0.24 × 0.20 mm
Data collection top
Rigaku AFC-7S
diffractometer
3013 reflections with I > 2σ(I)
Absorption correction: ψ-scan
MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993)
Rint = 0.066
Tmin = 0.747, Tmax = 0.8343 standard reflections every 150 reflections
3588 measured reflections intensity decay: none
3571 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.209 w = 1/[σ2(Fo2) + (0.1559P)2 + 21.2516P]
where P = (Fo2 + 2Fc2)/3
S = 1.10Δρmax = 2.29 e Å3
3571 reflectionsΔρmin = 1.07 e Å3
357 parametersAbsolute structure: Flack (1983)
85 restraintsAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. DEPOSIT MATERIAL

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

PHEN1

-15.6037(0.0255)*x + 20.4361(0.0273)*y + 3.2648(0.0282)*z=11.8354(0.0522)

* −0.0474 (0.0062) N11 * −0.0274 (0.0083) C11 * 0.0695 (0.0094) C12 * 0.0679 (0.0092) C13 * −0.0008 (0.0072) C14 * −0.0118 (0.0076) C15 * −0.0415 (0.0074) C16 * −0.0423 (0.0072) C17 * 0.0321 (0.0074) C18 * 0.0618 (0.0072) C19 * 0.0318 (0.0069) C110 * −0.0276 (0.0066) C111 * −0.0439 (0.0065) C112 * −0.0206 (0.0056) N12 − 0.1590 (0.0060) Ni1

Rms deviation of fitted atoms = 0.0423

PHEN2

15.9391(0.0291)*x + 19.6497(0.0329)*y + 3.9580(0.0321)*z=33.8452(0.0334)

* 0.0027 (0.0062) N21 * −0.0061 (0.0081) C21 * −0.0273 (0.0100) C22 * −0.0085 (0.0100) C23 * 0.0299 (0.0086) C24 * 0.0164 (0.0096) C25 * −0.0005 (0.0096) C26 * −0.0199 (0.0098) C27 * −0.0214 (0.0109) C28 * −0.0034 (0.0114) C29 * −0.0015 (0.0086) C210 * 0.0110 (0.0072) C211 * 0.0082 (0.0070) C212 * 0.0203 (0.0066) N22 − 0.0968 (0.0065) Ni1

Rms deviation of fitted atoms = 0.0158

THIOUREA-CL

6.4937(0.0786)*x − 7.0674(0.0522)*y + 15.8666(0.0228)*z=14.0899(0.0577)

* −0.0134 (0.0035) S31 * −0.0034 (0.0078) C31 * 0.0287 (0.0066) N31 * −0.0302 (0.0068) N32 * 0.0183 (0.0038) Cl1 − 0.3624 (0.0065) Ni1 − 7.1020 (0.0128) Cl2

Rms deviation of fitted atoms = 0.0213

THIOUREA

6.2846(0.0767)*x − 7.7743(0.1919)*y + 15.7989(0.0340)*z=13.1316(0.2398)

* −0.0003 (0.0022) S31 * 0.0011 (0.0078) C31 * −0.0004 (0.0027) N31 * −0.0004 (0.0029) N32 0.1232 (0.0255) Cl1 − 0.2880 (0.0156) Ni1 0.2336 (0.0176) Cl2_$2 0.2336 (0.0176) Cl2_$3

Rms deviation of fitted atoms = 0.0006

DIHEDRAL ANGLES MENTIONED IN TEXT: Angle PHEN1-PHEN2 (with approximate e.s.d.) = 87.54 (0.09) A ngle PHEN1–THIOUREA-CL (with approximate e.s.d.) = 79.09 (0.18) A ngle PHEN2–THIOUREA-CL (with approximate e.s.d.) = 75.61 (0.19)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.70139 (3)0.94714 (3)10.0331 (2)
Cl10.76985 (9)0.88680 (7)0.96910 (16)0.0494 (5)
N110.6309 (3)0.9025 (2)0.9767 (4)0.0376 (13)
C110.6028 (4)0.8744 (3)1.0242 (6)0.053 (2)
H110.61500.87281.07600.063*
C120.5559 (4)0.8470 (4)1.0012 (7)0.059 (2)
H120.53580.82911.03740.071*
C130.5396 (4)0.8470 (4)0.9227 (6)0.054 (2)
H130.50890.82850.90550.064*
C140.5698 (3)0.8752 (3)0.8703 (5)0.0391 (15)
C150.5558 (4)0.8770 (3)0.7884 (6)0.051 (2)
H150.52630.85830.76850.061*
C160.5855 (4)0.9059 (3)0.7398 (5)0.0511 (19)
H160.57640.90650.68690.061*
C170.6307 (4)0.9357 (3)0.7695 (5)0.0422 (16)
C180.6596 (4)0.9688 (3)0.7232 (5)0.0504 (19)
H180.65080.97190.67040.060*
C190.7015 (4)0.9967 (3)0.7579 (6)0.053 (2)
H190.72121.01850.72810.063*
C1100.7139 (3)0.9922 (3)0.8366 (5)0.0436 (17)
H1100.74231.01110.85880.052*
N120.6865 (3)0.9614 (2)0.8816 (4)0.0348 (12)
C1110.6451 (3)0.9346 (3)0.8501 (4)0.0353 (14)
C1120.6152 (3)0.9028 (2)0.9010 (4)0.0348 (14)
N210.6385 (3)0.9955 (2)1.0383 (4)0.0415 (14)
C210.6104 (4)1.0263 (3)0.9963 (7)0.058 (2)
H210.61961.02980.94370.070*
C220.5662 (5)1.0543 (4)1.0299 (9)0.075 (4)
H220.54611.07550.99920.090*
C230.5535 (4)1.0502 (4)1.1060 (11)0.085 (5)
H230.52451.06871.12790.102*
C240.5831 (5)1.0188 (4)1.1526 (8)0.073 (3)
C250.5712 (6)1.0118 (5)1.2318 (8)0.082 (3)
H250.54301.02981.25660.099*
C260.6008 (6)0.9785 (5)1.2736 (8)0.083 (3)
H260.59220.97491.32640.100*
C270.6444 (6)0.9491 (5)1.2390 (7)0.075 (3)
C280.6765 (7)0.9153 (5)1.2773 (8)0.085 (4)
H280.67000.90931.32990.103*
C290.7179 (7)0.8908 (5)1.2368 (8)0.084 (4)
H290.73950.86861.26320.101*
C2100.7289 (5)0.8980 (4)1.1569 (6)0.061 (2)
H2100.75650.88031.13050.074*
N220.6990 (3)0.9310 (3)1.1195 (4)0.0427 (14)
C2110.6568 (4)0.9569 (3)1.1583 (5)0.0480 (19)
C2120.6261 (3)0.9903 (3)1.1154 (5)0.0436 (17)
S310.76989 (8)1.01143 (7)1.02260 (14)0.0451 (5)
C310.8404 (3)1.0057 (3)0.9918 (5)0.0411 (15)
N310.8756 (3)1.0423 (3)0.9957 (6)0.059 (2)
H31A0.91141.04020.98030.070*
H31B0.86261.06801.01360.070*
N320.8613 (3)0.9663 (3)0.9640 (7)0.065 (2)
H32A0.89710.96460.94880.078*
H32B0.83900.94250.96120.078*
Cl20.75001.25000.6902 (3)0.0928 (16)
N410.75001.25000.9102 (9)0.095 (4)
O410.75001.25000.9867 (9)0.107 (4)
O420.7837 (4)1.2184 (3)0.8756 (7)0.108 (3)
O510.8442 (8)1.1467 (6)0.9669 (8)0.173 (7)
H510.82811.16960.94880.207*
C510.8499 (6)1.1516 (4)1.0496 (8)0.097 (4)
H51A0.89111.15171.06360.116*
H51B0.83161.12561.07540.116*
C520.8214 (6)1.1960 (4)1.0778 (8)0.084 (4)
H52A0.82801.19951.13290.126*
H52B0.78001.19491.06770.126*
H52C0.83831.22171.05050.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0314 (4)0.0349 (4)0.0331 (4)0.0019 (3)0.0032 (3)0.0057 (3)
Cl10.0454 (9)0.0386 (9)0.0643 (12)0.0019 (7)0.0021 (9)0.0144 (9)
N110.035 (3)0.041 (3)0.037 (3)0.006 (2)0.000 (2)0.006 (2)
C110.053 (4)0.052 (4)0.054 (5)0.022 (4)0.005 (4)0.008 (4)
C120.064 (5)0.060 (5)0.053 (5)0.024 (4)0.008 (5)0.005 (5)
C130.047 (4)0.060 (5)0.054 (5)0.017 (4)0.003 (4)0.005 (4)
C140.035 (3)0.037 (3)0.045 (4)0.004 (3)0.003 (3)0.003 (3)
C150.046 (4)0.047 (4)0.059 (5)0.006 (3)0.009 (4)0.014 (4)
C160.053 (4)0.063 (5)0.037 (4)0.006 (4)0.016 (3)0.005 (4)
C170.045 (4)0.044 (4)0.038 (4)0.007 (3)0.004 (3)0.001 (3)
C180.056 (5)0.063 (5)0.031 (3)0.012 (4)0.005 (3)0.005 (4)
C190.056 (5)0.052 (5)0.050 (5)0.001 (3)0.018 (4)0.020 (4)
C1100.042 (3)0.039 (4)0.050 (4)0.005 (3)0.005 (3)0.002 (3)
N120.034 (2)0.037 (3)0.033 (3)0.000 (2)0.009 (2)0.000 (3)
C1110.031 (3)0.040 (3)0.034 (3)0.007 (3)0.003 (3)0.009 (3)
C1120.029 (3)0.037 (3)0.039 (4)0.004 (2)0.000 (3)0.002 (3)
N210.033 (3)0.041 (3)0.050 (4)0.005 (2)0.005 (3)0.008 (3)
C210.043 (4)0.054 (5)0.078 (6)0.011 (3)0.008 (5)0.005 (5)
C220.052 (5)0.054 (5)0.117 (11)0.026 (5)0.005 (6)0.020 (6)
C230.042 (5)0.076 (7)0.137 (14)0.013 (4)0.017 (6)0.060 (8)
C240.053 (4)0.083 (6)0.083 (6)0.027 (4)0.033 (5)0.052 (5)
C250.073 (5)0.106 (7)0.068 (6)0.029 (5)0.032 (5)0.044 (5)
C260.082 (6)0.109 (7)0.058 (5)0.038 (5)0.034 (5)0.037 (5)
C270.080 (6)0.099 (8)0.046 (5)0.044 (6)0.023 (5)0.024 (5)
C280.112 (10)0.098 (9)0.046 (5)0.040 (8)0.005 (7)0.011 (6)
C290.091 (8)0.104 (10)0.059 (7)0.016 (7)0.021 (7)0.016 (7)
C2100.077 (6)0.055 (5)0.052 (5)0.009 (5)0.016 (5)0.009 (4)
N220.043 (3)0.048 (3)0.037 (3)0.008 (3)0.002 (3)0.004 (3)
C2110.044 (4)0.057 (4)0.043 (4)0.023 (4)0.004 (3)0.014 (4)
C2120.035 (3)0.051 (4)0.045 (4)0.010 (3)0.010 (3)0.019 (3)
S310.0330 (8)0.0432 (10)0.0590 (12)0.0046 (7)0.0076 (8)0.0194 (9)
C310.032 (3)0.046 (4)0.045 (4)0.002 (3)0.000 (3)0.007 (3)
N310.038 (3)0.055 (4)0.083 (6)0.012 (3)0.006 (4)0.010 (4)
N320.031 (3)0.054 (4)0.110 (7)0.003 (3)0.015 (4)0.030 (5)
Cl20.0329 (13)0.182 (5)0.064 (2)0.011 (2)00
N410.094 (7)0.096 (7)0.096 (7)0.016 (6)00
O410.108 (7)0.109 (7)0.105 (8)0.023 (6)00
O420.116 (5)0.109 (5)0.098 (5)0.034 (4)0.010 (4)0.009 (4)
O510.164 (10)0.180 (10)0.174 (11)0.008 (8)0.000 (9)0.023 (9)
C510.091 (7)0.087 (7)0.112 (9)0.016 (6)0.014 (7)0.037 (7)
C520.102 (8)0.067 (6)0.084 (7)0.010 (5)0.021 (6)0.007 (5)
Geometric parameters (Å, º) top
Ni1—N122.096 (7)N21—C2121.358 (12)
Ni1—N222.099 (7)C21—C221.415 (12)
Ni1—N112.102 (6)C22—C231.34 (2)
Ni1—N212.111 (7)C23—C241.38 (2)
Ni1—Cl12.405 (2)C24—C251.398 (19)
Ni1—S312.464 (2)C24—C2121.432 (12)
N11—C111.318 (11)C25—C261.38 (2)
N11—C1121.345 (10)C26—C271.440 (19)
C11—C121.390 (12)C27—C281.39 (2)
C12—C131.393 (16)C27—C2111.426 (14)
C13—C141.395 (13)C28—C291.37 (2)
C14—C1121.412 (10)C29—C2101.407 (18)
C14—C151.438 (13)C210—N221.337 (13)
C15—C161.362 (14)N22—C2111.391 (12)
C16—C171.438 (12)C211—C2121.404 (14)
C17—C181.411 (12)S31—C311.700 (7)
C17—C1111.418 (11)C31—N321.326 (10)
C18—C191.384 (14)C31—N311.335 (10)
C19—C1101.383 (14)N41—O411.309 (5)
C110—N121.335 (10)N41—O421.335 (5)
N12—C1111.336 (9)N41—O42i1.335 (5)
C111—C1121.439 (11)O51—C511.429 (5)
N21—C211.316 (13)C51—C521.523 (5)
N12—Ni1—N22169.1 (2)N11—C112—C14123.4 (7)
N12—Ni1—N1179.3 (3)N11—C112—C111117.5 (6)
N22—Ni1—N1191.5 (3)C14—C112—C111119.1 (7)
N12—Ni1—N2193.4 (3)C21—N21—C212120.2 (8)
N22—Ni1—N2180.1 (3)C21—N21—Ni1127.9 (7)
N11—Ni1—N2187.1 (2)C212—N21—Ni1111.8 (6)
N12—Ni1—Cl192.12 (18)N21—C21—C22121.0 (12)
N22—Ni1—Cl193.9 (2)C23—C22—C21119.9 (12)
N11—Ni1—Cl190.37 (18)C22—C23—C24120.8 (9)
N21—Ni1—Cl1173.4 (2)C23—C24—C25124.0 (12)
N12—Ni1—S3196.02 (18)C23—C24—C212117.3 (11)
N22—Ni1—S3191.9 (2)C25—C24—C212118.6 (14)
N11—Ni1—S31168.81 (19)C26—C25—C24120.7 (13)
N21—Ni1—S3183.04 (18)C25—C26—C27122.7 (12)
Cl1—Ni1—S31100.02 (7)C28—C27—C211117.7 (12)
C11—N11—C112118.0 (7)C28—C27—C26126.1 (12)
C11—N11—Ni1129.6 (6)C211—C27—C26116.2 (14)
C112—N11—Ni1112.4 (5)C29—C28—C27119.4 (11)
N11—C11—C12123.7 (10)C28—C29—C210122.6 (13)
C11—C12—C13118.6 (9)N22—C210—C29118.7 (12)
C12—C13—C14119.2 (8)C210—N22—C211120.8 (9)
C13—C14—C112117.1 (8)C210—N22—Ni1127.8 (7)
C13—C14—C15122.6 (8)C211—N22—Ni1111.2 (6)
C112—C14—C15120.3 (7)N22—C211—C212118.0 (8)
C16—C15—C14120.5 (8)N22—C211—C27120.9 (11)
C15—C16—C17120.7 (8)C212—C211—C27121.1 (10)
C18—C17—C111116.9 (8)N21—C212—C211118.6 (7)
C18—C17—C16123.1 (8)N21—C212—C24120.7 (10)
C111—C17—C16119.8 (8)C211—C212—C24120.6 (10)
C19—C18—C17118.7 (8)C31—S31—Ni1118.5 (3)
C110—C19—C18120.3 (8)N32—C31—N31119.2 (7)
N12—C110—C19121.9 (8)N32—C31—S31122.4 (6)
C110—N12—C111119.2 (7)N31—C31—S31118.4 (6)
C110—N12—Ni1127.9 (6)O41—N41—O42116.3 (7)
C111—N12—Ni1112.9 (5)O41—N41—O42i116.3 (7)
N12—C111—C17122.9 (7)O42—N41—O42i127.3 (14)
N12—C111—C112117.6 (7)O51—C51—C52111.1 (5)
C17—C111—C112119.5 (7)
N12—Ni1—N11—C11178.1 (8)S31—Ni1—N21—C2186.7 (7)
N22—Ni1—N11—C114.1 (8)N12—Ni1—N21—C212167.6 (5)
N21—Ni1—N11—C1184.1 (8)N22—Ni1—N21—C2123.6 (5)
Cl1—Ni1—N11—C1189.8 (8)N11—Ni1—N21—C21288.5 (5)
S31—Ni1—N11—C11111.9 (11)Cl1—Ni1—N21—C21221 (2)
N12—Ni1—N11—C1124.4 (5)S31—Ni1—N21—C21296.8 (5)
N22—Ni1—N11—C112178.4 (5)C212—N21—C21—C220.8 (13)
N21—Ni1—N11—C11298.4 (5)Ni1—N21—C21—C22175.5 (7)
Cl1—Ni1—N11—C11287.7 (5)N21—C21—C22—C231.5 (17)
S31—Ni1—N11—C11270.6 (12)C21—C22—C23—C240.1 (18)
C112—N11—C11—C123.6 (14)C22—C23—C24—C25178.3 (11)
Ni1—N11—C11—C12179.0 (8)C22—C23—C24—C2121.8 (16)
N11—C11—C12—C133.9 (17)C23—C24—C25—C26177.2 (11)
C11—C12—C13—C141.4 (16)C212—C24—C25—C260.8 (16)
C12—C13—C14—C1121.0 (14)C24—C25—C26—C270.7 (18)
C12—C13—C14—C15179.8 (9)C25—C26—C27—C28179.2 (12)
C13—C14—C15—C16178.1 (9)C25—C26—C27—C2111.4 (17)
C112—C14—C15—C161.1 (13)C211—C27—C28—C290.5 (18)
C14—C15—C16—C170.9 (13)C26—C27—C28—C29178.2 (11)
C15—C16—C17—C18174.9 (8)C27—C28—C29—C2101 (2)
C15—C16—C17—C1110.7 (12)C28—C29—C210—N221.9 (19)
C111—C17—C18—C192.5 (12)C29—C210—N22—C2111.4 (14)
C16—C17—C18—C19178.2 (8)C29—C210—N22—Ni1175.7 (8)
C17—C18—C19—C1100.6 (13)N12—Ni1—N22—C210124.7 (15)
C18—C19—C110—N120.3 (13)N11—Ni1—N22—C21091.8 (8)
C19—C110—N12—C1110.9 (12)N21—Ni1—N22—C210178.5 (8)
C19—C110—N12—Ni1177.0 (6)Cl1—Ni1—N22—C2101.3 (8)
N22—Ni1—N12—C110144.1 (14)S31—Ni1—N22—C21098.9 (7)
N11—Ni1—N12—C110177.7 (7)N12—Ni1—N22—C21150.0 (18)
N21—Ni1—N12—C11091.3 (7)N11—Ni1—N22—C21182.9 (5)
Cl1—Ni1—N12—C11092.3 (6)N21—Ni1—N22—C2113.8 (5)
S31—Ni1—N12—C1108.0 (7)Cl1—Ni1—N22—C211173.4 (5)
N22—Ni1—N12—C11137.9 (18)S31—Ni1—N22—C21186.4 (5)
N11—Ni1—N12—C1114.3 (5)C210—N22—C211—C212178.8 (8)
N21—Ni1—N12—C11190.7 (5)Ni1—N22—C211—C2123.7 (9)
Cl1—Ni1—N12—C11185.7 (5)C210—N22—C211—C270.1 (12)
S31—Ni1—N12—C111174.0 (5)Ni1—N22—C211—C27175.2 (7)
C110—N12—C111—C172.9 (11)C28—C27—C211—N220.9 (14)
Ni1—N12—C111—C17175.2 (6)C26—C27—C211—N22178.8 (8)
C110—N12—C111—C112178.2 (7)C28—C27—C211—C212179.7 (9)
Ni1—N12—C111—C1123.7 (8)C26—C27—C211—C2122.4 (13)
C18—C17—C111—N123.7 (11)C21—N21—C212—C211179.7 (8)
C16—C17—C111—N12179.7 (7)Ni1—N21—C212—C2112.8 (8)
C18—C17—C111—C112177.4 (7)C21—N21—C212—C241.2 (11)
C16—C17—C111—C1121.5 (11)Ni1—N21—C212—C24178.1 (6)
C11—N11—C112—C140.9 (11)N22—C211—C212—N210.6 (10)
Ni1—N11—C112—C14178.8 (5)C27—C211—C212—N21178.3 (8)
C11—N11—C112—C111178.3 (7)N22—C211—C212—C24178.5 (7)
Ni1—N11—C112—C1113.9 (8)C27—C211—C212—C242.6 (12)
C13—C14—C112—N111.3 (12)C23—C24—C212—N212.5 (13)
C15—C14—C112—N11179.4 (7)C25—C24—C212—N21179.1 (8)
C13—C14—C112—C111176.0 (7)C23—C24—C212—C211178.4 (8)
C15—C14—C112—C1113.2 (11)C25—C24—C212—C2111.8 (13)
N12—C111—C112—N110.2 (10)N12—Ni1—S31—C3178.4 (4)
C17—C111—C112—N11179.1 (6)N22—Ni1—S31—C31109.2 (4)
N12—C111—C112—C14177.6 (6)N11—Ni1—S31—C31143.1 (10)
C17—C111—C112—C143.4 (11)N21—Ni1—S31—C31171.0 (4)
N12—Ni1—N21—C219.0 (7)Cl1—Ni1—S31—C3114.9 (4)
N22—Ni1—N21—C21179.8 (8)Ni1—S31—C31—N327.5 (10)
N11—Ni1—N21—C2188.1 (8)Ni1—S31—C31—N31172.3 (7)
Cl1—Ni1—N21—C21155.2 (14)
Symmetry code: (i) x+3/2, y+5/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31A···Cl2ii0.862.433.234 (8)155
N31—H31B···O510.862.453.151 (18)139
N32—H32A···Cl2ii0.862.573.337 (7)150
N32—H32A···Cl2iii0.862.573.337 (7)150
N32—H32B···Cl10.862.263.112 (8)170
O51—H51···O420.822.152.95 (2)165
Symmetry codes: (ii) x+1/4, y+9/4, z+1/4; (iii) x+7/4, y1/4, z+1/4.

Experimental details

Crystal data
Chemical formula[Ni(CH4N2S)(C12H8N2)2Cl]2·Cl·NO3·2C2H6O
Mr1250.98
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)22.813 (4), 29.024 (6), 17.113 (4)
V3)11331 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.33 × 0.24 × 0.20
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionψ-scan
MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993)
Tmin, Tmax0.747, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
3588, 3571, 3013
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.209, 1.10
No. of reflections3571
No. of parameters357
No. of restraints85
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1559P)2 + 21.2516P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.29, 1.07
Absolute structureFlack (1983)
Absolute structure parameter0.01 (3)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1995), PLATON98 (Spek, 1990).

Selected geometric parameters (Å, º) top
Ni1—N122.096 (7)Ni1—N212.111 (7)
Ni1—N222.099 (7)Ni1—Cl12.405 (2)
Ni1—N112.102 (6)Ni1—S312.464 (2)
N12—Ni1—N22169.1 (2)N11—Ni1—Cl190.37 (18)
N12—Ni1—N1179.3 (3)N21—Ni1—Cl1173.4 (2)
N22—Ni1—N1191.5 (3)N12—Ni1—S3196.02 (18)
N12—Ni1—N2193.4 (3)N22—Ni1—S3191.9 (2)
N22—Ni1—N2180.1 (3)N11—Ni1—S31168.81 (19)
N11—Ni1—N2187.1 (2)N21—Ni1—S3183.04 (18)
N12—Ni1—Cl192.12 (18)Cl1—Ni1—S31100.02 (7)
N22—Ni1—Cl193.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31A···Cl2i0.862.433.234 (8)155.4
N31—H31B···O510.862.453.151 (18)138.6
N32—H32A···Cl2i0.862.573.337 (7)149.8
N32—H32A···Cl2ii0.862.573.337 (7)149.8
N32—H32B···Cl10.862.263.112 (8)169.7
O51—H51···O420.822.152.95 (2)165.3
Symmetry codes: (i) x+1/4, y+9/4, z+1/4; (ii) x+7/4, y1/4, z+1/4.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds