organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4′-(2-meth­­oxy­quinolin-3-yl)-1′-methyl­di­spiro­[indan-2,2′-pyrrolidine-3′,3′′-indoline]-1,3,2′′-trione

aDepartment of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
*Correspondence e-mail: ps_mohan_in@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 November 2015; accepted 1 December 2015; online 12 December 2015)

In the title compound, C30H23N3O4, the central 1-methyl­pyrrolidine ring adopts a twist conformation on the N—CH2 bond. The pyrrolidin-2-one ring of the indolin-2-one ring system also has a twist conformation on the C—C bond involving the spiro C atom and the carbonyl C atom. The five-membered ring of the indene-1,3-dione moiety has an envelope conformation with the spiro C atom as the flap. The quinoline ring system adopts an almost planar conformation (r.m.s. deviation = 0.04 Å). The mean planes of the indolin-2-one ring system, the indene-1,3-dione ring system and the the quinoline ring system are inclined to the mean plane of the central 1-methyl­pyrrolidine ring by 77.97 (7), 86.98 (7) and 46.58 (6)°, respectively. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains along the b axis. The chains are linked via a number of C—H⋯O hydrogen bonds, and C—H⋯π and ππ inter­actions [inter-centroid distance = 3.7404 (9) Å], forming a three-dimensional network.

1. Related literature

For the biological activity of pyrrolidine and indole derivatives, see: Babu et al. (2012[Babu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech. Res. 4, 903-909.]); Savithri et al. (2014[Savithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94-97.]); Govind et al. (2003[Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Rathna Durga, R. & Raghunathan, R. (2003). Acta Cryst. E59, o1875-o1877.]); Gayathri et al. (2005[Gayathri, D., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2005). Acta Cryst. E61, o3556-o3558.]); Li et al. (2004[Li, Y. L. & Xu, W. F. (2004). Bioorg. Med. Chem. 12, 5171-5180.]); Bellina & Rossi (2006[Bellina, F. & Rossi, R. (2006). Tetrahedron, 62, 7213-7256.]). For the crystal structure of a similar di­spiro­indoline compound, see: Nirmala et al. (2009[Nirmala, S., Karthikeyan, K., Kamala, E. T. S., Sudha, L. & Perumal, P. T. (2009). Acta Cryst. E65, o1655-o1656.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H23N3O4

  • Mr = 489.51

  • Monoclinic, P 21 /n

  • a = 10.9058 (3) Å

  • b = 9.5178 (5) Å

  • c = 23.8651 (6) Å

  • β = 95.378 (2)°

  • V = 2466.27 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.27 × 0.18 × 0.11 mm

2.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.990

  • 23642 measured reflections

  • 6134 independent reflections

  • 4376 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.03

  • 6134 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.86 2.19 2.971 (2) 151
C4—H4⋯O3ii 0.93 2.56 3.350 (2) 143
C6—H6⋯O4iii 0.93 2.42 3.307 (2) 159
C12—H12A⋯O2iv 0.97 2.53 3.325 (2) 139
C28—H28⋯O4i 0.93 2.56 3.354 (1) 144
C18—H18⋯Cg1v 0.93 2.89 3.778 (6) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrrolidine ring system is found in a vast variety of compounds displaying an impressive range of biological activities (Babu et al., 2012). Optically active pyrrolidines have been used as inter­mediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri et al., 2014). Pyrrolidine compounds are reported to exhibit anti­microbial, anti­fungal (Govind et al., 2003), anti-influenza virus (Gayathri et al., 2005), anti-inflammatory, anti­tumor (Li et al., 2004), inhibit retroviral reverse transcriptases [i.e., human immunodeficiency virus type 1 (HIV-1)], cellular DNA polymerases, protein kinases (Bellina and Rossi, 2006), anti­biotics (Nirmala et al., 2009), anti­convulsant, sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, keto­amide-based cathepsin K inhibitors, human melanocortin-4 receptor agonists (Babu et al., 2012). Indole compounds can be used as bioactive drugs. Indole derivatives exhibit anti­allergic, central nervous system depressant and muscle relaxant properties. In view of this biological importance, the title compound was synthesized and we report herein on its the crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The central 1-methyl­pyrrolidine ring (N2/C11/C12/C14/C23) adopts a twist conformation on the N2—C12 bond. The pyrrolidine-2-one ring (N3/C23/C24/C29/C30) of the indoline-2-one ring system also has a twist conformation on the C23—C30 bond involving the spiro C atom and the carbonyl C atom. The five-membered ring (C14—C16/C21/C22) of the indene-1,3-dione moiety has an envelope conformation with atom C14 as the flap. The quinoline ring system adopts a planar conformation [r.m.s. deviation = 0.04 Å]. The mean planes of the indolin-2-one ring system, the indene-1,3-dione ring system and the the quinoline ring system are inclined to the mean plane of the central 1-methyl­pyrrolidine ring by 77.97 (7), 86.98 (7) and 46.58 (6) °, respectively.

In the crystal, molecules are linked via N—H···N hydrogen bonds forming zigzag chains along the b axis direction (Table 1 and Fig. 2). The chains are linked via number of C—H···O hydrogen bonds, and C—H···π and π-π inter­actions, involving inversion related quinoline units [Cg4···Cg5i = 3.7404 (9) Å; where Cg4 and Cg5 are the centroids of rings N1/C1—C3/C8/C9 and C3—C8; symmetry code: (i) -x, -y+1, -z+1], forming a three-dimensional structure (Table 1 and Fig. 3).

Synthesis and crystallization top

A mixture of indoline-2,3-dione (1 mmol) and 2-(methyl­amino)­acetic acid (1.5 mmol) were dissolved in methanol (100 ml) and refluxed for 5 min, followed by the addition of (Z)-3-((2-meth­oxy­quinolin-3-yl) methyl­ene) indolin-2-one (0.5 mmol), then the mixture was refluxed for 8 h. After completion of the reaction (monitored by silicagel precoated TLC), the title compound was separated from the cooled reaction mixture, filtered and dried under reduced pressure. Slow evaporation of a solution on the title compound in chloro­form/methanol (4:1) yielded light-yellow block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93-0.98 Å and N—H = 0.86 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(N,C) for other H atoms.

Related literature top

For the biological activity of pyrrolidine and indole derivatives, see: Babu et al. (2012); Savithri et al. (2014); Govind et al. (2003); Gayathri et al. (2005); Li et al. (2004); Bellina & Rossi (2006). For the crystal structure of a similar dispiroindoline compound, see: Nirmala et al. (2009).

Structure description top

The pyrrolidine ring system is found in a vast variety of compounds displaying an impressive range of biological activities (Babu et al., 2012). Optically active pyrrolidines have been used as inter­mediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri et al., 2014). Pyrrolidine compounds are reported to exhibit anti­microbial, anti­fungal (Govind et al., 2003), anti-influenza virus (Gayathri et al., 2005), anti-inflammatory, anti­tumor (Li et al., 2004), inhibit retroviral reverse transcriptases [i.e., human immunodeficiency virus type 1 (HIV-1)], cellular DNA polymerases, protein kinases (Bellina and Rossi, 2006), anti­biotics (Nirmala et al., 2009), anti­convulsant, sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, keto­amide-based cathepsin K inhibitors, human melanocortin-4 receptor agonists (Babu et al., 2012). Indole compounds can be used as bioactive drugs. Indole derivatives exhibit anti­allergic, central nervous system depressant and muscle relaxant properties. In view of this biological importance, the title compound was synthesized and we report herein on its the crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The central 1-methyl­pyrrolidine ring (N2/C11/C12/C14/C23) adopts a twist conformation on the N2—C12 bond. The pyrrolidine-2-one ring (N3/C23/C24/C29/C30) of the indoline-2-one ring system also has a twist conformation on the C23—C30 bond involving the spiro C atom and the carbonyl C atom. The five-membered ring (C14—C16/C21/C22) of the indene-1,3-dione moiety has an envelope conformation with atom C14 as the flap. The quinoline ring system adopts a planar conformation [r.m.s. deviation = 0.04 Å]. The mean planes of the indolin-2-one ring system, the indene-1,3-dione ring system and the the quinoline ring system are inclined to the mean plane of the central 1-methyl­pyrrolidine ring by 77.97 (7), 86.98 (7) and 46.58 (6) °, respectively.

In the crystal, molecules are linked via N—H···N hydrogen bonds forming zigzag chains along the b axis direction (Table 1 and Fig. 2). The chains are linked via number of C—H···O hydrogen bonds, and C—H···π and π-π inter­actions, involving inversion related quinoline units [Cg4···Cg5i = 3.7404 (9) Å; where Cg4 and Cg5 are the centroids of rings N1/C1—C3/C8/C9 and C3—C8; symmetry code: (i) -x, -y+1, -z+1], forming a three-dimensional structure (Table 1 and Fig. 3).

For the biological activity of pyrrolidine and indole derivatives, see: Babu et al. (2012); Savithri et al. (2014); Govind et al. (2003); Gayathri et al. (2005); Li et al. (2004); Bellina & Rossi (2006). For the crystal structure of a similar dispiroindoline compound, see: Nirmala et al. (2009).

Synthesis and crystallization top

A mixture of indoline-2,3-dione (1 mmol) and 2-(methyl­amino)­acetic acid (1.5 mmol) were dissolved in methanol (100 ml) and refluxed for 5 min, followed by the addition of (Z)-3-((2-meth­oxy­quinolin-3-yl) methyl­ene) indolin-2-one (0.5 mmol), then the mixture was refluxed for 8 h. After completion of the reaction (monitored by silicagel precoated TLC), the title compound was separated from the cooled reaction mixture, filtered and dried under reduced pressure. Slow evaporation of a solution on the title compound in chloro­form/methanol (4:1) yielded light-yellow block-like crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93-0.98 Å and N—H = 0.86 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A partial view, along the c axis, of the crystal packing of the title compound, illustrating the formation of the hydrogen-bonded zigzag chains (dashed lines; see Table 1) running along the the b-axis direction. C-bound H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines and C—H···π interactions as blue arrows (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
4'-(2-Methoxyquinolin-3-yl)-1'-methyldispiro[indan-2,2'-pyrrolidine-3',3''-indoline]-1,3,2''-trione top
Crystal data top
C30H23N3O4F(000) = 1024
Mr = 489.51Dx = 1.318 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6134 reflections
a = 10.9058 (3) Åθ = 1.7–28.3°
b = 9.5178 (5) ŵ = 0.09 mm1
c = 23.8651 (6) ÅT = 293 K
β = 95.378 (2)°Block, light yellow
V = 2466.27 (16) Å30.27 × 0.18 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6134 independent reflections
Radiation source: fine-focus sealed tube4376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and φ scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.976, Tmax = 0.990k = 1012
23642 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.5577P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6134 reflectionsΔρmax = 0.31 e Å3
337 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (5)
Crystal data top
C30H23N3O4V = 2466.27 (16) Å3
Mr = 489.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9058 (3) ŵ = 0.09 mm1
b = 9.5178 (5) ÅT = 293 K
c = 23.8651 (6) Å0.27 × 0.18 × 0.11 mm
β = 95.378 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6134 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4376 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.990Rint = 0.044
23642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
6134 reflectionsΔρmin = 0.22 e Å3
337 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20917 (13)0.33633 (15)0.40978 (6)0.0154 (3)
C20.25284 (13)0.41678 (15)0.45432 (6)0.0164 (3)
H20.32360.47010.45200.020*
C30.19148 (13)0.42037 (15)0.50442 (6)0.0176 (3)
C40.22810 (14)0.50968 (16)0.55041 (6)0.0214 (3)
H40.29760.56600.54950.026*
C50.16109 (15)0.51327 (18)0.59628 (6)0.0250 (4)
H50.18440.57360.62600.030*
C60.05752 (15)0.42652 (18)0.59859 (6)0.0261 (4)
H60.01290.42960.62990.031*
C70.02161 (14)0.33733 (17)0.55504 (6)0.0233 (3)
H70.04590.27870.55740.028*
C80.08663 (13)0.33397 (16)0.50662 (6)0.0191 (3)
C90.10099 (13)0.25475 (16)0.41718 (6)0.0176 (3)
C100.04213 (16)0.0851 (2)0.37798 (8)0.0343 (4)
H10A0.01780.01860.40720.051*
H10B0.06390.03600.34330.051*
H10C0.11180.13780.38810.051*
C110.26420 (13)0.32928 (14)0.35404 (5)0.0145 (3)
H110.19880.35600.32500.017*
C120.37260 (13)0.42704 (15)0.34739 (6)0.0169 (3)
H12A0.34480.52130.33720.020*
H12B0.42780.43110.38170.020*
C130.54710 (14)0.42826 (17)0.28930 (6)0.0228 (3)
H13A0.60390.42840.32260.034*
H13B0.53050.52320.27730.034*
H13C0.58230.37750.25990.034*
C140.44003 (13)0.21185 (15)0.31502 (6)0.0154 (3)
C150.54468 (13)0.16447 (16)0.35943 (6)0.0189 (3)
C160.59196 (13)0.02809 (16)0.34030 (7)0.0226 (3)
C170.67272 (15)0.06517 (18)0.36946 (8)0.0333 (4)
H170.70270.04880.40670.040*
C180.70682 (17)0.18363 (19)0.34082 (10)0.0431 (5)
H180.76090.24780.35920.052*
C190.66172 (16)0.20855 (19)0.28513 (10)0.0402 (5)
H190.68720.28840.26700.048*
C200.57999 (15)0.11731 (18)0.25617 (8)0.0307 (4)
H200.54920.13490.21920.037*
C210.54552 (13)0.00257 (17)0.28481 (7)0.0222 (3)
C220.46541 (13)0.12011 (16)0.26393 (6)0.0193 (3)
C230.30953 (12)0.17946 (15)0.33795 (5)0.0138 (3)
C240.31584 (13)0.06063 (15)0.38042 (5)0.0148 (3)
C250.36072 (13)0.05524 (16)0.43670 (6)0.0178 (3)
H250.39450.13460.45490.021*
C260.35408 (14)0.07186 (16)0.46557 (6)0.0218 (3)
H260.38290.07720.50340.026*
C270.30461 (14)0.19003 (17)0.43797 (6)0.0236 (3)
H270.30180.27400.45780.028*
C280.25907 (14)0.18660 (16)0.38152 (6)0.0211 (3)
H280.22630.26640.36330.025*
C290.26467 (13)0.05929 (15)0.35366 (5)0.0162 (3)
C300.22483 (13)0.11534 (15)0.28885 (5)0.0156 (3)
N10.04388 (11)0.24888 (13)0.46238 (5)0.0198 (3)
N20.43214 (11)0.36056 (13)0.30155 (5)0.0161 (3)
N30.21780 (11)0.02577 (13)0.29860 (5)0.0171 (3)
H30.18840.08620.27410.021*
O10.05853 (9)0.17940 (11)0.37099 (4)0.0226 (2)
O20.17649 (9)0.17942 (11)0.24841 (4)0.0201 (2)
O30.58400 (10)0.23063 (12)0.40066 (4)0.0262 (3)
O40.42980 (10)0.14597 (13)0.21553 (4)0.0287 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0163 (7)0.0128 (7)0.0173 (6)0.0012 (6)0.0025 (5)0.0014 (5)
C20.0178 (7)0.0135 (7)0.0179 (6)0.0001 (6)0.0017 (5)0.0010 (5)
C30.0208 (7)0.0148 (8)0.0173 (6)0.0045 (6)0.0027 (5)0.0022 (6)
C40.0256 (8)0.0183 (8)0.0201 (7)0.0041 (6)0.0009 (6)0.0004 (6)
C50.0320 (9)0.0257 (9)0.0169 (7)0.0120 (7)0.0002 (6)0.0002 (6)
C60.0296 (9)0.0322 (10)0.0177 (7)0.0146 (7)0.0075 (6)0.0071 (7)
C70.0206 (8)0.0257 (9)0.0247 (7)0.0063 (7)0.0071 (6)0.0076 (7)
C80.0194 (7)0.0170 (8)0.0210 (7)0.0054 (6)0.0029 (6)0.0043 (6)
C90.0164 (7)0.0147 (8)0.0214 (7)0.0014 (6)0.0007 (5)0.0006 (6)
C100.0297 (9)0.0328 (11)0.0407 (10)0.0171 (8)0.0054 (7)0.0098 (8)
C110.0166 (7)0.0112 (7)0.0153 (6)0.0011 (6)0.0001 (5)0.0002 (5)
C120.0210 (7)0.0130 (7)0.0166 (6)0.0021 (6)0.0010 (5)0.0001 (5)
C130.0219 (8)0.0217 (8)0.0252 (7)0.0012 (6)0.0049 (6)0.0068 (6)
C140.0175 (7)0.0125 (7)0.0160 (6)0.0003 (6)0.0008 (5)0.0029 (5)
C150.0166 (7)0.0188 (8)0.0209 (7)0.0035 (6)0.0000 (6)0.0071 (6)
C160.0144 (7)0.0175 (8)0.0358 (9)0.0008 (6)0.0021 (6)0.0090 (7)
C170.0198 (8)0.0235 (9)0.0556 (11)0.0004 (7)0.0028 (8)0.0167 (8)
C180.0225 (9)0.0206 (10)0.0853 (16)0.0057 (8)0.0009 (9)0.0172 (10)
C190.0255 (9)0.0152 (9)0.0815 (15)0.0024 (7)0.0141 (9)0.0000 (9)
C200.0227 (8)0.0196 (9)0.0518 (11)0.0001 (7)0.0142 (8)0.0024 (8)
C210.0166 (7)0.0168 (8)0.0341 (8)0.0009 (6)0.0071 (6)0.0027 (6)
C220.0189 (7)0.0182 (8)0.0214 (7)0.0007 (6)0.0051 (6)0.0002 (6)
C230.0159 (7)0.0123 (7)0.0129 (6)0.0008 (6)0.0002 (5)0.0001 (5)
C240.0160 (7)0.0121 (7)0.0163 (6)0.0011 (6)0.0017 (5)0.0015 (5)
C250.0208 (7)0.0158 (8)0.0162 (7)0.0014 (6)0.0016 (5)0.0006 (6)
C260.0270 (8)0.0214 (8)0.0162 (7)0.0009 (7)0.0018 (6)0.0034 (6)
C270.0306 (8)0.0160 (8)0.0238 (8)0.0020 (7)0.0008 (6)0.0068 (6)
C280.0260 (8)0.0137 (8)0.0235 (7)0.0025 (6)0.0010 (6)0.0003 (6)
C290.0173 (7)0.0168 (8)0.0145 (6)0.0003 (6)0.0014 (5)0.0012 (5)
C300.0167 (7)0.0148 (7)0.0153 (6)0.0003 (6)0.0012 (5)0.0016 (5)
N10.0187 (6)0.0178 (7)0.0232 (6)0.0007 (5)0.0036 (5)0.0015 (5)
N20.0188 (6)0.0135 (6)0.0162 (6)0.0001 (5)0.0028 (5)0.0029 (5)
N30.0228 (6)0.0126 (6)0.0151 (6)0.0012 (5)0.0023 (5)0.0037 (5)
O10.0193 (5)0.0224 (6)0.0261 (5)0.0076 (5)0.0019 (4)0.0057 (4)
O20.0247 (5)0.0189 (6)0.0153 (5)0.0011 (4)0.0046 (4)0.0009 (4)
O30.0282 (6)0.0245 (6)0.0240 (5)0.0073 (5)0.0076 (4)0.0062 (5)
O40.0353 (6)0.0339 (7)0.0175 (5)0.0083 (5)0.0048 (5)0.0010 (5)
Geometric parameters (Å, º) top
C1—C21.3595 (19)C14—C221.5455 (19)
C1—C91.4370 (19)C14—C151.550 (2)
C1—C111.5112 (18)C14—C231.6019 (18)
C2—C31.4243 (18)C15—O31.2122 (18)
C2—H20.9300C15—C161.484 (2)
C3—C81.413 (2)C16—C171.390 (2)
C3—C41.416 (2)C16—C211.394 (2)
C4—C51.373 (2)C17—C181.387 (3)
C4—H40.9300C17—H170.9300
C5—C61.404 (2)C18—C191.394 (3)
C5—H50.9300C18—H180.9300
C6—C71.370 (2)C19—C201.382 (3)
C6—H60.9300C19—H190.9300
C7—C81.4117 (19)C20—C211.399 (2)
C7—H70.9300C20—H200.9300
C8—N11.3768 (19)C21—C221.477 (2)
C9—N11.2965 (18)C22—O41.2091 (17)
C9—O11.3595 (17)C23—C241.5159 (19)
C10—O11.4398 (19)C23—C301.5478 (19)
C10—H10A0.9600C24—C251.3867 (18)
C10—H10B0.9600C24—C291.398 (2)
C10—H10C0.9600C25—C261.397 (2)
C11—C121.5244 (19)C25—H250.9300
C11—C231.5686 (19)C26—C271.387 (2)
C11—H110.9800C26—H260.9300
C12—N21.4668 (17)C27—C281.392 (2)
C12—H12A0.9700C27—H270.9300
C12—H12B0.9700C28—C291.386 (2)
C13—N21.4633 (18)C28—H280.9300
C13—H13A0.9600C29—N31.4013 (17)
C13—H13B0.9600C30—O21.2191 (16)
C13—H13C0.9600C30—N31.3664 (19)
C14—N21.4521 (18)N3—H30.8600
C2—C1—C9116.09 (12)O3—C15—C14125.85 (14)
C2—C1—C11125.05 (13)C16—C15—C14107.38 (12)
C9—C1—C11118.85 (12)C17—C16—C21121.39 (16)
C1—C2—C3120.81 (13)C17—C16—C15128.78 (15)
C1—C2—H2119.6C21—C16—C15109.81 (13)
C3—C2—H2119.6C16—C17—C18117.31 (18)
C8—C3—C4119.40 (13)C16—C17—H17121.3
C8—C3—C2117.56 (13)C18—C17—H17121.3
C4—C3—C2123.00 (14)C17—C18—C19121.42 (17)
C5—C4—C3120.05 (15)C17—C18—H18119.3
C5—C4—H4120.0C19—C18—H18119.3
C3—C4—H4120.0C20—C19—C18121.55 (17)
C4—C5—C6120.47 (15)C20—C19—H19119.2
C4—C5—H5119.8C18—C19—H19119.2
C6—C5—H5119.8C19—C20—C21117.27 (17)
C7—C6—C5120.54 (14)C19—C20—H20121.4
C7—C6—H6119.7C21—C20—H20121.4
C5—C6—H6119.7C16—C21—C20121.04 (15)
C6—C7—C8120.34 (15)C16—C21—C22109.82 (13)
C6—C7—H7119.8C20—C21—C22129.08 (15)
C8—C7—H7119.8O4—C22—C21127.10 (14)
N1—C8—C3122.06 (12)O4—C22—C14124.99 (14)
N1—C8—C7118.75 (14)C21—C22—C14107.81 (12)
C3—C8—C7119.17 (14)C24—C23—C30101.44 (11)
N1—C9—O1119.89 (13)C24—C23—C11120.68 (11)
N1—C9—C1126.12 (13)C30—C23—C11111.36 (11)
O1—C9—C1113.99 (12)C24—C23—C14112.70 (11)
O1—C10—H10A109.5C30—C23—C14107.67 (10)
O1—C10—H10B109.5C11—C23—C14102.66 (11)
H10A—C10—H10B109.5C25—C24—C29120.11 (13)
O1—C10—H10C109.5C25—C24—C23131.68 (13)
H10A—C10—H10C109.5C29—C24—C23108.21 (11)
H10B—C10—H10C109.5C24—C25—C26118.66 (13)
C1—C11—C12116.13 (11)C24—C25—H25120.7
C1—C11—C23114.59 (11)C26—C25—H25120.7
C12—C11—C23105.31 (11)C27—C26—C25120.25 (13)
C1—C11—H11106.7C27—C26—H26119.9
C12—C11—H11106.7C25—C26—H26119.9
C23—C11—H11106.7C26—C27—C28121.89 (14)
N2—C12—C11102.48 (11)C26—C27—H27119.1
N2—C12—H12A111.3C28—C27—H27119.1
C11—C12—H12A111.3C29—C28—C27117.19 (14)
N2—C12—H12B111.3C29—C28—H28121.4
C11—C12—H12B111.3C27—C28—H28121.4
H12A—C12—H12B109.2C28—C29—C24121.88 (13)
N2—C13—H13A109.5C28—C29—N3128.32 (13)
N2—C13—H13B109.5C24—C29—N3109.71 (12)
H13A—C13—H13B109.5O2—C30—N3126.84 (13)
N2—C13—H13C109.5O2—C30—C23125.82 (13)
H13A—C13—H13C109.5N3—C30—C23107.32 (11)
H13B—C13—H13C109.5C9—N1—C8117.27 (13)
N2—C14—C22112.79 (11)C14—N2—C13116.06 (11)
N2—C14—C15117.35 (12)C14—N2—C12106.06 (10)
C22—C14—C15101.55 (11)C13—N2—C12113.99 (12)
N2—C14—C23103.12 (11)C30—N3—C29111.23 (11)
C22—C14—C23113.03 (11)C30—N3—H3124.4
C15—C14—C23109.34 (10)C29—N3—H3124.4
O3—C15—C16126.68 (14)C9—O1—C10116.13 (12)
C9—C1—C2—C31.3 (2)C1—C11—C23—C249.78 (18)
C11—C1—C2—C3177.52 (13)C12—C11—C23—C24119.09 (13)
C1—C2—C3—C82.1 (2)C1—C11—C23—C30108.89 (13)
C1—C2—C3—C4175.45 (14)C12—C11—C23—C30122.25 (12)
C8—C3—C4—C50.9 (2)C1—C11—C23—C14136.15 (12)
C2—C3—C4—C5176.61 (14)C12—C11—C23—C147.29 (13)
C3—C4—C5—C61.4 (2)N2—C14—C23—C24150.97 (11)
C4—C5—C6—C70.2 (2)C22—C14—C23—C2486.94 (14)
C5—C6—C7—C81.5 (2)C15—C14—C23—C2425.39 (15)
C4—C3—C8—N1177.54 (13)N2—C14—C23—C3097.99 (12)
C2—C3—C8—N10.1 (2)C22—C14—C23—C3024.10 (15)
C4—C3—C8—C70.8 (2)C15—C14—C23—C30136.42 (12)
C2—C3—C8—C7178.43 (13)N2—C14—C23—C1119.61 (12)
C6—C7—C8—N1176.40 (14)C22—C14—C23—C11141.71 (11)
C6—C7—C8—C32.0 (2)C15—C14—C23—C11105.97 (12)
C2—C1—C9—N11.6 (2)C30—C23—C24—C25168.81 (14)
C11—C1—C9—N1179.44 (14)C11—C23—C24—C2545.3 (2)
C2—C1—C9—O1178.08 (12)C14—C23—C24—C2576.33 (18)
C11—C1—C9—O10.85 (19)C30—C23—C24—C2911.01 (14)
C2—C1—C11—C123.5 (2)C11—C23—C24—C29134.53 (13)
C9—C1—C11—C12175.32 (12)C14—C23—C24—C29103.85 (13)
C2—C1—C11—C23119.73 (15)C29—C24—C25—C260.3 (2)
C9—C1—C11—C2361.45 (17)C23—C24—C25—C26179.91 (14)
C1—C11—C12—N2159.38 (11)C24—C25—C26—C270.7 (2)
C23—C11—C12—N231.44 (13)C25—C26—C27—C280.7 (2)
N2—C14—C15—O335.42 (19)C26—C27—C28—C290.2 (2)
C22—C14—C15—O3158.85 (14)C27—C28—C29—C241.2 (2)
C23—C14—C15—O381.49 (17)C27—C28—C29—N3175.11 (14)
N2—C14—C15—C16141.36 (12)C25—C24—C29—C281.3 (2)
C22—C14—C15—C1617.93 (14)C23—C24—C29—C28178.90 (13)
C23—C14—C15—C16101.74 (12)C25—C24—C29—N3175.66 (12)
O3—C15—C16—C1713.5 (3)C23—C24—C29—N34.18 (15)
C14—C15—C16—C17169.79 (15)C24—C23—C30—O2167.42 (13)
O3—C15—C16—C21164.90 (14)C11—C23—C30—O237.77 (18)
C14—C15—C16—C2111.84 (15)C14—C23—C30—O274.05 (16)
C21—C16—C17—C181.0 (2)C24—C23—C30—N314.36 (13)
C15—C16—C17—C18177.20 (15)C11—C23—C30—N3144.01 (11)
C16—C17—C18—C190.2 (3)C14—C23—C30—N3104.18 (12)
C17—C18—C19—C200.8 (3)O1—C9—N1—C8176.13 (12)
C18—C19—C20—C210.9 (2)C1—C9—N1—C83.6 (2)
C17—C16—C21—C200.9 (2)C3—C8—N1—C92.6 (2)
C15—C16—C21—C20177.64 (13)C7—C8—N1—C9175.76 (14)
C17—C16—C21—C22178.35 (14)C22—C14—N2—C1368.82 (15)
C15—C16—C21—C220.15 (16)C15—C14—N2—C1348.69 (16)
C19—C20—C21—C160.1 (2)C23—C14—N2—C13168.92 (11)
C19—C20—C21—C22176.86 (15)C22—C14—N2—C12163.46 (11)
C16—C21—C22—O4164.54 (15)C15—C14—N2—C1279.03 (14)
C20—C21—C22—O412.7 (3)C23—C14—N2—C1241.21 (13)
C16—C21—C22—C1412.15 (16)C11—C12—N2—C1446.38 (13)
C20—C21—C22—C14170.62 (15)C11—C12—N2—C13175.31 (11)
N2—C14—C22—O432.2 (2)O2—C30—N3—C29168.83 (13)
C15—C14—C22—O4158.68 (14)C23—C30—N3—C2912.97 (15)
C23—C14—C22—O484.30 (18)C28—C29—N3—C30170.86 (14)
N2—C14—C22—C21144.58 (12)C24—C29—N3—C305.81 (16)
C15—C14—C22—C2118.10 (14)N1—C9—O1—C106.3 (2)
C23—C14—C22—C2198.91 (13)C1—C9—O1—C10173.97 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.862.192.971 (2)151
C4—H4···O3ii0.932.563.350 (2)143
C6—H6···O4iii0.932.423.307 (2)159
C12—H12A···O2iv0.972.533.325 (2)139
C28—H28···O4i0.932.563.354 (1)144
C18—H18···Cg1v0.932.893.778 (6)160
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.862.192.971 (2)151
C4—H4···O3ii0.932.563.350 (2)143
C6—H6···O4iii0.932.423.307 (2)159
C12—H12A···O2iv0.972.533.325 (2)139
C28—H28···O4i0.932.563.354 (1)144
C18—H18···Cg1v0.932.893.778 (6)160
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+1.
 

Acknowledgements

The authors thank the X-ray facility, Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan, for the data collection. SM is grateful to the UGC–BSR, Bahadurshah Zafar Marg, New Delhi 110 002, India, for financial support.

References

First citationBabu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech. Res. 4, 903–909.  CAS Google Scholar
First citationBellina, F. & Rossi, R. (2006). Tetrahedron, 62, 7213–7256.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2005). Acta Cryst. E61, o3556–o3558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGovind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Rathna Durga, R. & Raghunathan, R. (2003). Acta Cryst. E59, o1875–o1877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y. L. & Xu, W. F. (2004). Bioorg. Med. Chem. 12, 5171–5180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNirmala, S., Karthikeyan, K., Kamala, E. T. S., Sudha, L. & Perumal, P. T. (2009). Acta Cryst. E65, o1655–o1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94–97.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds